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ported by NASA contract NAS 7-100. The author is a Professor at UCLA and a 
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Abstract 

This report contains an exposition of several alternative methods of analytical 
dynamics, and the application of these methods to alternative models of nonrigid 
spacecraft. This information permits the comparative evaluation of these methods 
for spacecraft simulation. 

The following methods are developed from D’Alembert’s principle in vector 

(1) Lgrmge’s form of D’Alembert’s principle for independent generalized 

(2) Lagrange’s form of D’Alembert’s principle for simply constrained systems. 

(3) b e ’ s  quas ia rd ina te  formulation of DAlembert’s principle. 

(4) Lagrange’s equations for independent generalized coordinates. 

(5) Lagrange’s equations for simply constrained systems. 

(6) Lagrangian quasi-coordinate equations (or the Boltzmann-Hamel equations). 

(7) Hamilton’s equations for simply constrained systems. 

(8) Hamilton’s equations for independent generalized coordinates. 

form: 

coordinates. 

Applications to idealized spa& are considered both for multiple-rigid-body 
models and for models consisting of combinations of rigid bodies and elastic bodies, 
with the &tic bodies being defined either as continua, as finite-element systems, 
or as a mllection of given modal data Several specific examples are developed in 
detail by alternative methods of analytical mechanics, and results are compared 
to a Newton-Euler formulation. 

Conclusions are straightforward in the case of the multiple-rigid-body topo- 
logical tree idealization, for which the standard of comparison is a Newton-Euler 
formulation due originally to Hooker and Margulies and widely available in the 
form of a JPL computer program. 

Although the equations in the previously existing JPL computer program are 
obtained in this report by means of both Kane’s approach and the Lagrangian 
quasi-coordinate method. neither these nor any other methods of analytical dy- 
naiiiics produced rcsults superior to the prcsent standard. 

-4pplications to combinations of rigid bodies and elastic bodies are more varied 
and more complex, and conclusions are more tentative, but essentially the same 
result emerges. Although various methods of analytical dynamics produce the 
same equations of motion as have previously been derived by the Newton-Euler 
approach, there appears to be no demonstrable advantage in any of the methods 
of analytical dynamics over the Newton-Euler results, except in the unusual case 
in which a continuum idealization is appropriate and in the somewhat academic 
case in which a truncated set of vibration mode shapes and frequencies are given 
in advance of the dynamic analysis. 

-.-- 
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Analytical Dynamics and Nonrigid 
Spacecraft Simulation 

1. lntrodudion 
A. BackgroundmdMotivatiin 

In &ti traditional academic paspectwe, the classical methods of Lagrange and 
Hamilton are, in comparison with the direct application of Newton’s laws, 
accepted as the more advanced procedures for formulating equations of motion 
for mechanical systems. 

The methods of Newton and Euler, which involve physically visualizable quanti- 
ties represented in modern times by Gibbsian vectors’ and dyadics, are generally 
recognized as being most useful in the struggle for conceptual understanding of 
the behavior of relatively simple systems, such as particles in space or gyroscopes. 
It is, however, widely believed that, in providing the transition from the physical 
world of uectoria2 mechanics to the abstract analytical realm of generalized scalar 
formulations found in analytical mechanics, Lagrange gave us superior procedures 
for deriving equations of motion for complex mechanical systems. 

Hamilton’s formulations are widely regarded as even more powerful than those 
of Lagrange. Hamilton’s principle embraces much of Newtonian mechanics in a 
single, scalar variational equation; Hamilton’s canonical equations replace 
Lagrange’s scalar, second order, ordinary differential equations with first order ordi- 
nary differential equations of remarkably simple structure; and the Hamilton-Jacobi 
equation is a single partial differential equation that subsumes much of Newtonian 
and Lagrangian mechanics. 

‘A Cibbhn vector (to be distinguished from an n-dimensional column matrix ) is geometrically 
equivalent to a directed line segment in physical space, with rules for addition and both scalar 
and vectorial multiplication. 
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The methods of Lagrange and Hamilton automatically remove from the equa- 
tions of motion most of the unknown and unwanted forces of constraint that 
plague the analyst who applies Newton’s laws. Moreover, the former methods 
yield differential equations whose structure is system-invariant, while the proce- 
dures of Newton and Euler must be reconstructed for each new mechanical 
system. Finally, the equations of Lagrange and Hamilton are explicitly constructed 
to facilitate integration, whereas those of Newton and Euler have no particular 
structure at all, being dependent for their form on the strategy adopted by the 
analyst. 

Against this background, we consider the notoriously complex problems of 
formulating equations of motion for nonrigid spacecraft. Probably no other class 
of physical system is routinely subjected to such complicated mathematical 
modeling, and described by such difficult ordinary differential equations of motion. 
Fortunately, the spacecraft and its physical environment are much more amenable 
to accurate modeling than are other physical systems of comparable or greater 
complexity (such as the automobile, or the human being). The internal structure 
of the spacecraft is subject to component testing and design control, and the 
external space environment is much less complex than the terrestrial environment. 
At the same time, spacecraft mission performance specifications demand extra- 
ordinary precision in the prediction of dynamic behavior; for example, certain 
planned astronomical observatory experiments require that a large space telescope 
maintain an established orientation to within an rms pointing accuracy measured 
in thousandths of an arcsecond! The combination of amenability to accurate 
modeling and demand for accurate predictions has resulted in great emphasis 
during the past five or ten years on the development of ever more complex formu- 
lations of the equations of motion of idealized space vehicles. 

The juxtaposition of the modern spacecraft and the reputation of the methods 
of Lagrange and Hamilton certainly suggests that enlightened analysts would 
bring these methods to bear upon the spacecraft simulation problem. Yet the 
informed reader will recognize that at present the most widely used procedures 
for simulating nonrigid spacecraft are based on the methods of Newton and Euler. 
It is true that a substantial percentage of the early technical papers on spacecraft 
dynamics and control involve the application of Lagrange’s equations (Refs. 1-6); 
a few such papers are based on Hamilton’s canonical equations (Refs. 7, 8); and 
in more recent papers several authors pay homage to Hamilton’s principle 
(Refs. 9-11). But the early developments that have provided the basis for most 
modem simulation practice rely almost invariably upon Newton-Euler formula- 
tions (Refs. 12-19). 

In recent years the nonrigid spacecraft analysis field has expanded to include 
many more contributors, and with the diversity of participants has come a variety 
of approaches to the problem. In this period, progress with literal attitude 
stability analyses for flexible spacecraft has relied primarily on the concepts of 
analytical mechanics (see Refs. 20-22, all of which use some form of Hamiltonian 
as a Liapunov testing function). Lagrange’s equations have provided the basis 
for the rather general nonrigid spacecraft simulation programs developed in 
Refs. 23-25, although in these papers the analysts have provided a procedure 
for repeated computer-assembly of equations of motion rather than attempt an 
explicit generic statement of the necessary equations for the system. Despite these 
exceptions, it is still true that the dominant formulations are based on the direct 
application of the methods of Newton and Euler (see Refs. 2 M 2 ) .  
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It has, however, been suggested in several recent papers that advantage might 
be gained by using various Lagrangian or Hamiltonian formulations of the equa- 
tions of motion, even for large-scale simulations of nonrigid spacecraft (see 
Refs. 33-35, for examples). The quasi-coordinate approach has been advocated for 
this role (Ref. S4), and this approach has even been the subject of at least one 
governmentally funded study contract. Other writers have recently advocated vari- 
ants of Hamilton’s canoiiical equations for spacecraft simulations, on the basis of 
the attractiveness of their structure for numerical integration (Ref. 35). The modern 
quasi-coordinate approach advanced by Kane and Wang (Ref. 36) seems to com- 
bine many of the strengths of the Newtonian and Lagrangian approaches, and 
this method has been proposed for nonrigid spacecraft simulations (Ref. 19), 
but not systematically evaluated. The utility of Lagrange’s equations with 
Lagrange multipliers is only rarely explored in the literature on space api$ications 
(Ref. 37), and one might wonder if the full potential of this approach has been 
realized. 

are be&g raised at a time when considerations of 
reful review of all major efforts within the space pro- 
priprity on the development of general-purpose or 
with the capability of comprehensive but efficient 

simulatim of wide classes of nonrigid spacecraft. 

B. Scope of Study 

A gmmal evaluation of the comparative advantages of the procedures of 
vectorial rnecharh (Newton-Eder formulations) and analytical mechanics 
(Lagrange-Hamilton formulations) would require a monumental eilort, and would 
be dm& certain to founder on the rock of author subjectivity. In this report we 
consider a mnch smaller and more specific objective. It is the purpose of this 
study to explore three of the basic methods of analytical dynamics and their 
variations, and to examine them for their suitability for the development of 
multipurpose generic formulations of the equations of motion of nonrigid space- 
craft, idealized either as multiple-rigid-body systems or as systems of intercon- 
nected elastic or rigid-elastic bodies. Although differences in formulation effort 
are important also, the final measure of a formulation procedure in the modem 
context is the accuracy and efficiency of operation of a computer program based 
on the equations. The present report is intended to assess the advisability of 
making the commitment of resources necessary to develop the computer programs 
required if we are to obtain this definitive measure of simulation procedures. 
The results should be valuable to any readers who face the future prospect of 
developing computer programs for the simulation of nonrigid spacecraft. 

The three methods of analytical dynamics to be developed and evaluated here 
are as follows: 

(1) D’Alembert’s principle and its generalizations (including Lagrange’s two 
basic forms of D’Alembert’s principle and Kane’s more general formulation). 

(2) Lagrange’s equations (including generalized coordinate equations for both 
holonomic and simple nonholonomic systems, and quasi-coordinate equa- 

(3) Hamilton’s equations, in forms applicable to simple nonholonomic and 

tions). 

nonconservative systems, as well as the classical restricted cases. 
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These methods are developed sequentially in Section I1 of this report, and their 
applicability to various models of nonrigid spacecraft is examined and compared 
in Section 111. Conclusions and recommendations are contained in the final 
Section IV. 

II. Selected Methods of Analytical Dynamics 
A. D’Alernbert’s Principle and Its Generalizations 

1. D’Alembert’s principle. Given a set of N particles,’ we can use Newton’s 
second law to record a complete set of equations of motion in the form 

.. 
(1) F .  - m . R .  = O  1 = 1 ... N 1 1  > 9 ,  

where mj is the mass of the jth particle, Rj locates the jth particle from an mer- 
tially fixed point (and Rj is the inertial acceleration), and Fj is the resultant force 
applied to the particle. As a matter of definition, we can separate Fj into two 
parts, F; and F f  , with the latter accommodating the contributions to Fj of inter- 
action forces within the system of particles. If we then sum the N equations given 
by Eq. (l), we can observe that the vectors F j  will not appear in the result, due 
to Newton’s third law; thus we have 

N CFj = O  
i = i  

and consequently, 

k ( F ; - m j R j ) = O  i = i  (3) 

The term D’Alembert’s principle is applied in the literature nonuniformly, but 
Eqs. (l), (2) and (3) are each sometimes given this label. (The original 1743 exposi- 
tion by D’Alembert in his Trait6 de Dynumique is entitled “A General Principle 
for Finding the Motions of Several Bodies Which React on Each Other in Any 
Fashion;” D’Alembert’s objective was to establish the disappearance of the inter- 
action forces from Eq. (3) due to Eq. (2). Nonetheless, modern authors have 
made Eq. (1) familiar to most readers as “D’Alembert’s principle.”) We cannot 
digress here for either history or philosophy; we seek only enough information to 
permit evaluation of the engineering utility of the results. Within this framework, 
none of the preceding variations of D’Alembert’s principle is RP iisefd 2s 22 
alternative form obtained historically by combining Eq. (1) with Bernoulli’s 
principle of virtual work. 

Obviously, Eq. (1) can be dot-multiplied by any vector at all and a valid 
equation will result. In particular, we can introduce the symbols 6Rj, i = I, ..., N 
and write Eq. (1) as 

.. 
(Fj - mjRj)-6Rj  = 0, j = 1, . . . , N  (4) 

‘We will derive equations for systems consisting of finite numbers of particles, and without formal 
proof apply our results to continua, replacing particles by differential elements of mass, and 
summations by integrations. Since we limit scope to systems having constant mass, this transition 
from discrete to continuoris models introduces no difficulties when developed formally. 
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By summing these N equations, we can obtain 

Although Eqs. (4) and (5 )  apply for any definition we may wish to give to 
6Rj ( i  = 1, . .., N), it has been convenient historically to conceive of these vectors 
as imaginary or virtual displacements of the N particles in inertial space; the units 
or dimensions of the quantities in these equations then correspond to work (e.g., 
Newton-meter). When the mass times acceleration terms in Eq. ( 5 )  are moved to 
the right hand side of the equation (or considered to be zero, in the static equi- 
librium case), the resulting equation is said to express the principle of virtual 
work, and when written as Eq. (Sj this equation is SG~E&ZXS k a c w ~  8s the 
generalized principle of D’Alembert. The practical utility of Eq. (5) is greatly 
increased when the vectors 6Rj are written in terms of generalized coordinates. 

Any set of Y scalars 91% - -, qv that fully defines the configuration of the system 
is called a set of geneyked coordinates. By this definition, it must be possible to 
write %, m terms of the generalized coordinates and time explicitly, to obtain 

If now the uirtua2 displacement SR, is interpreted as a variation of the vector Ri 
in the sense of variational calcdus, we can treat the 6 as an operator and employ 
the expression 

Substituting Eq. (7) into Eq. (S), and reversing the sequence of the finite sums, we 
find 

Eq. (8) is yet another form of D’Alembert’s principle; this version was used by 
Lagrange in the derivation of his famous equations (see Subsection 11-B), and it 
leads to results of direct practical utility in its own right for a wide class of 
dynamical systems, as we shall see in the following sections. 

2. Lagrange’s form of D’Alembert’s principle for independent generalized 
coordinates 

a. Constraints. In general the generalized coordinates q,, ..., 9. in Eq. (8) are 
not independent; they may be related by constraint equations. If these constraint 
equations adopt the form 

I 

they are said to define holonomic constraints, and they can (at least conceptually) 
be solved for m of the generalized coordinates in terms of the remaining v - m. 
(In practice we may wish to forego this option if the constraint equations are not 
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easily solved; then we can use the procedure in the next section.) We designate the 
number v - m as n, and speak of n as the number of degrees of freedom in the 
system. (For our system of N particles, we have n _< 3 N . )  

If we use Eq. (9) to eliminate m of the generalized coordinates in Eq. (6) in favor 
of the remaining n, then Eq. (6) becomes 

and Eqs. (7) and (8) change correspondingly, with n replacing V. The important 
difference lies in the fact that we can allow the generalized virtual displacements 
6ql, ..., 6q, to be independent without violating constraints, whereas 6q1, ..., 6qv 
must be treated as interdependent unless we want these imaginary displacements 
to violate the constraints. As will be shown, by maintaining compatibility with 
constraints we can eliminate certain unknown forces from the equations of 
motion, so we accept this restriction. When the n generalized virtual displace- 
ments are independent, we can select n different sets, each time making all but 
one equal to zero. Thus we conclude that each of ,the coefficients of Sq,, e . . ,  6 q ,  
in Eq. ( 8 )  is individually zero, to achieve the major objective of this section. 

27. Lagrange’s form of DAlembert’s Principle. For a set of n independent gen- 
eralized coordinates, Eq. (8) produces the useful result 

In the form of Eq. (ll), Lagrange has written a consequence of D’Alembert’s 
principle and the principle of virtual work that has a substantial practical value, 
because the system of n equations is in many applications a complete set, sufficient 
to solve for the kinematical unknowns ql, . .., qn. 

c. Constraint forces. There may be in addition to the generalized coordinates 
other unknowns in the physical problem; certain forces may be required to main- 
tain the constraints established by Eq. (9), and these forces will not be known in 
advance of the solution of the problem. The virtue of Eq. (11) lies in the fact that 
such unknown constraint forces, although present in Fj, very often are absent from 
Eq. (11). As a matter of definition, we can separate Fj again into two parts, f j  and 
f:, with f: representing that part of Fj that disappears in the course of the dot multi- 
plications and summations in Eq. (11). The forces f: therefore by d$ntttoib saiidy 
the equation 

implying that Eq. (11) takes the form 

N -. 3Rj 
(fj - mj Rj) -- = 0, k = 1, ..., n 

j=1 aqk (13) 

The forces f; are often referred to as nonworking constraint forces, because they 
do no work in the course of a virtual displacement compatible with constraints 
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(compare Eq. (12) with Eq. (S), with v replaced by n). It should not be imagined 
however that the so-called nonworking constraint forces can do no work in the 
course of the actua2 motion experienced by a physical system (see the example in 
Ref. 38, pp. 188-190). Nor should we jump to the optimistic conclusion that UU 
constraint forces are subsumed by f:; a Coulomb friction force, for example, is 
proportional to the normal force between two bodies, so the magnitude of the 
unknown normal force of constraint remains in Eq. (11). Nonetheless there is a 
wide range of commonly considered constraint forces that do classify as nonwork- 
ing constraint forces, and as long as the problem includes constraint forces of only 
this kind Eq. (11) provides a complete set of equations that can be solved fm 
ql, a * * ,  qn. In particular, Whittaker3 shows (Ref. 39, pp. 31-32 and pp. 36-37) that 
the following classes of forces qualify as nonworking constraint forces when 
applied to holanomically constrained systems : 

(1) The reactions of perfectly smooth or perfectly rough surfaces with which 
the bodies of the system are constrained to remain in contact, whether these 
surfaces be inertia& fixed or moving in a prescribed manner. The term 
8moylth impueS that &e reaction is normal to the surface, and a rough 
surface is one that precludes sliding and permits only rolling contact. 

(2) The mutual reactions of two partides constrained to remain a fixed distance 
or a prescribed time-varying distance apart. Since a rigid body can be 
considered as an aggregate of particles interconnected so as to maintain 
invariable distances between all particle pairs, the internal forces in a rigid 
body are nonworking constraint forces. 

(3) The reactions at any frictionless pinned joint of the system, whether this 
joint interconnects two bodies of the system or connects one body of the 
system to an external point which is either inertially stationary or moving 
in a prescribed manner. 

I 

d. Generalized forces. It is customary to defme the generalized forces Q1, * *, Qn 

bY 

h where advantage has been taken of Eq. (12) to eliminate f; from Fj = f j  -I- f;. 
The scalars Qk are sometimes called generalized actiue forces (Ref. 40), in distinc- 
tion to the terms 

which are then called the generalized inertia forces. Eqs. (11) and (13) then take 
the scalar form 

3Whittaker states that these forces “do no work on the system . . . during the motion” (p. 31), 
but it is clear from his examples (p. 37) that he means “do no work on the system in the 
course of a virtual displacement compatible with constraints.” Whittaker’s list of typical non- 
working constraint forces is not identical to that shown here, but it is equivalent. 
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8 

or the matrix form 

where 

Q + Q ’ = O  

Eqs. (ll), (13), (15), and (16) are all equivalent, and any or all of these equations 
will be referred to as Lagrange’s form of D’Alembert’s principle for independent 
generalized coordinates. Since the nonworking constraint forces do not appear in 
these equations, Eqs. (ll), (13), (15), or (16) can provide a complete set of equa- 
tions of motion for any holonomic system unless there exist some unknown con- 
straint forces (such as those normal forces associated with Coulomb friction forces) 
that do not classify as nonworking constraint forces by the definition in Eq. (12). 

In application, the calculation of the generalized forces may be simplified by 
the identity 

which follows from differentiation of the expansion 

Since R is linear in the generalized velocities, we can obtain aR/aG, by inspection 
of R, as simply the coefficient of &. Thus for an N-particle system we can replace 
Eqs. (14a) and (14b) by 

and rewrite Eq. (13) in the form 

e.  Rigid bodies. When a set of particles is so constrained that each particle 
remains a fixed distance from every other particle, we call it a rigid body (not- 
withstanding the fact that an undeformable material continuum is given the same 
name). Since there may be many particles in a rigid body, the explicit calculations 
in Eqs. (19) can become cumbersome. The generalized forces are much more easily 
calculated if we introduce RP as the vector from an inertially fixed point to some 
(arbitrarily selected) reference point p fixed in the rigid body, and let ri locate 
the jth particle with respect to p (see Fig. 1). Then we can substitute 
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IN RIGID B O D 9  

INERTIALLY F W D  
REFERENCE POINT 

BODY 

Fig. 1. Particla system constrained as rigid body 

where o is the inertia angular velocity of the rigid body. Since rj has no explicit 
dependence on tjk, the preceding ezpression becomes 

Thus if all N particles of a system belong to the same rigid body, we can combine 
this result with Eq. (19) to obtain (after elementary vector operations) 

where f and mp are respectively the resultant force and moment for point p applied 
. to the body, excluding nonworking constraint forces defined by Eq. (12). More 

precisely, these symbols are defined by 

A N  
f =cfj 

j = l  

(23) 
A '  

m p = C  rj X f j  
j = 1  

Explicit expressions for the generalized inertial force Qi for a rigid body are 
deferred to the section immediately following. 

f .  Systems of particles and rigid bodies. If the system consists of 9 particles and 
91 rigid bodies, as in Fig. 2, where 9 = 2 and 9 = 7, Eq. (19) becomes 

where f j  is the resultant force (excluding nonworking constraint forces) on the jth 
body; R p ,  is an inertial position vector locating point p j  on body 1; and m p j  is the 
resultant of moments about p i  of working forces applied to the jth body. 

In the special case when the reference point p i  is chosen as the mass center c ,  
of the jth body, we will write Eq. (24) in the form 

, 
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Fig. 2. System of seven particles and two 
multiple-particle rigid bodies 

so that Rj denotes an inertial position vector of the mass center cj of the jth body 
(see Fig. 2), and mj is the moment about the mass center of the jth body. 

Just as Eq. (19a) led to Eq. (25) as a useful expression for the generalized 
active force Qk, Eq. (19b) for the generalized inertial force Q; leads for the system 
of 9 particles and 9 rigid bodies to 

where "$lj is the total mass of the jth body and Hi is the angular momentum of 
the jth body referred to its mass center. (By definition, we have for a rigid body 
composed of N, particles 

where as in Fig. 1 pa locates the sth particle in the jfh body with respect to the 
mass center of that body.) To obtain Eq. (26) from Eq. (19b), we must use Eq. (27) 
to record 

so we can recognize that 

f 
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With this substitution, Eq. (26) leads to Eq. (19b). If we combine Eqs. (25) and 
(26) into Eq. (15) and group the terms judiciously, we obtain 

If we had not used Eq. (12) to eliminate nonworking constraint forces from the 
system, then each of the expressions in parentheses would have been recognizably 
zero from the Newton-Euler formulation of the mechanics of particles and rigid 
bodies, since fj, fj  and mI would then have represented the resultant forces and 
moments due ta J! fmces applied to the system. In such a case, we need not even 
be restricted by assumptions of independent generalized coordinates. The value 
of Eq. (28) over the corresponding (and more general) Newton-Euler formulation 
lies in the fact that nonworking constraint forces have been eliminated, and the 
number of equations has been reduced to the smallest number that will provide 
a complete qystem 9f equations for the physical system, assuming that the 

independent and that all unknown forces of constraint 
traint forces. 

g. Deformable baly kinematics. As noted in footnote 2 at the beginning of 
Section 11, we will accept here without formal argument the transition from 
particle mechanics to the mechanics of differential elements of mass in a con- 
tinuym. For such an application, the unknowns become vector functions of space 
and time rather than a finite number of vectors depending only on time, as in the 
case of N particles. Thus the equations of motion are formally partial differential 
equations in spatial and temporal independent variables, rather than the ordinary 
differential equations in time appearing on the preceding pages. 

The analytical descripon of the motion of a deformable body requires some 
careful attention to definitions, because the distinctions among the many possible 
options are rather subtle. Figure 3 provides the first step in the definition of 
kinematical variables. In this figure the position vector R locating the typical 

\ 
SHADOW OF BODY 
FIXED I N  f 

G A L  
FRAME i 

REFERENCE F/ 

DEFORMABLE 
BODY 

/ . / 
--I 
. 

Fig. 3. Description of a deformable body 
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differential element of mass relative to the inertially fixed point o is replaced by 
the vector sum 

R = RI’ + r + u (99) 

The vector RP locates relative to o an arbitrary point p ,  which is fixed in an 
arbitrary reference frame f .  The differential mass element is then located relative 
to p by r + u, where r is fixed in f .  Specific choices for f and p are left open, 
since different options are most attractive in different situations, but always the 
vector u describes a displacement of dm from some reference point fixed in f .  
This displacement depends on the material point of the body as well as on time, 
and we can identify every material point by its position in the reference state, as 
identified by r. Thus u is a function of I- and t. If we expand r in terms of unit 
vectors f,, f?, f ,  fixed in frame f, so that r = rlfl + r2f2 + r,f <, we can write 

The kinematical unknowns include not only u, but also six scalar functions of 
time required for the specification of the motion of f ,  which has not yet been 
defined uniquely. These six extra unknowns must be specified, either as explicit 
functions of time, or by six scalar (or two vector) constraint equations, or by a 
set of six second order ordinary differential equations. We shall entertain various 
options for equations defining f only when the analytical development provides 
the motivation for a wise choice. 

As noted in conceptual terms previously, the equations of motion include partial 
differential equations in the vector dependent variable u(rl, r2, r3, t )  in terms of the 
independent variables r,, r2,  r,, t. In some important applications, it is possible to 
formally separate the partial differential equations of vibration of an elastic con- 
tinuum into an infinite set of ordinary differential equations. In such cases, it is 
commonplace (and completely reasonable in applied work) to ignore most of the 
resulting ordinary differential equations, retainiag only those with probable 
significance to the problem under consideration. 

The procedure of separating partial differential equations into infinite sets of 
ordinary differential equations and then truncating them to a finite set is 
equivalent to the imposition of constraints on the continuum, which restricts its 
deformation to a finite number of possible modes, with the magnitude of the 
deformation in each mode being represented by a generalized coordinate. Ana- 
lytically, this means that the unknown vector function u = u(rl, r2,  r .>,  t )  is being 
replaced by the expansion 

where the vector functions of spatial variables Q’ are specified and the scalars 
q ( t )  remain as kinematical unknowns, limited in number to ii. 

In recognition of this equivalence, an analyst can reasonably decide to idealize 
his continuum in the first place as a system having a finite number of degrees of 
freedom in deformation (say A), represented by the generalized coordinates 
ql ,  ..-, 41;. The vectors (“mode shapes”) Q’, ..., Q’ then become an inherent part of 
the idealization, and the analyst can formulate ordinary differential equations of 
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motion in the unknown generalized coordinates without giving further thought 
to the modal vectors q ~ j  (1 = 1, ...,a). 

When the time comes to apply the equations of motion to a physical system, 
the modal vectors must of course be specified. We have noted that for special 
cases (such as small-deformation beams) one can obtain these functions from the 
partial differential equations of motion. In some cases it might be acceptable to 
simply assign modal vectors based on engineering judgment. In general, however, 
both of these options are closed, and one must reject the continuum model in 
favor of a discretized model, at least for purposes of modal analysis (Ref. 41). The 
problems of modal analysis of discretized models are treated extensively in Refs. 19 
and 27, and they will not be examined here. For present purposes, we shall 
assume that somehow the mode shape are known. 

la. Deformnble body dyturmics. Having established the general feasibility of 
describing approximately the motions of a continuum with a finite number of 
generalized coordinates, we can quickly move to adopt for its equations of motion 
the resuits developed as Eq. (15), namely 

(15) Qk + Q; = O7 k = 1, .-., n 
provided that the n generalized coordinates of the system 91, 9,, (including 
now the n' deformation coordinates) are independent. We can consider these 
equations of motion only if we revise the generalized force definitions in Eqs. (14) 
to accommodate the continuum, replacing summations by integrations and particle 
masses and forces by differential quantities. These extended definitions of general- 
ized active forces Qk and generalized inertia forces Qi then become 

and 

As in the case of a rigid body, we find that with some manipulation we can 
reduce the definitions of generalized forces to simpler forms. For the deformable 
body, we can combine Eqs. (32a), (29), and (17) to obtain 

Q, =/( aRe a i  - + - + ") *df 
24,; s q k  ? q k  

where by definition o is the inertial angular velocity of frame f ,  

f =  "I df (33) 

and an open circle over the vector u implies its time differentiation in frame f .  
Noting that 

ar ?U 
- 0  - ---- a4, a@, 

JPL TECHNICAL REPORT 32-1593 13 



exchanging dot and cross products in scalar triple products, and extracting 0 
from the integral produce 

a& am 
Qk = f + ail, [ /r  X df + /U X df] + /$* df (34) 

The nominal moment resultant for p of all forces other than nonworking constraint 
forces we define as 

noting that internal forces almost always disappear from this integral. With this 
substitution and the introduction into Qk of the expansion in Eq. (31), we find 

where we have assumed that pj is given as a constant vector in reference frame f .  
In comparing this expression for Q k  to Eq. (22), you can see that we could have 
obtained Q k  for a rigid body as a special case of Q k  for a deformable body. 

The generalized inertia force can be similarly expanded, to obtain from 
Eq. (32b) 

I 

The complexity of this expression provides abundant motivation to seek special 
values of p and f that willsimplify Qk. In particular, if p is the body mass center 
for all u, we have 

/ / /  r d m =  udm= iidm=O (37) 
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and Qf becomes much simpler. Rather than attempt to specialize Eq. (36), 
however, we will return to the original definition of Q; in Eq. (32b) and accom- 
plish the expansion anew, this time replacing R by R" + p = R" + + u when 
appropriate (see Fig. 3). Now we have 

a& 
a O k  

- ( R C  + fi + ii) - dm 

where by definition the angular momentum referred to the mass center is 

In confirmation of these results, one can combine Eqs. (38), (34), and (15) to 
obtain (substituting c for p )  

I 

If we recall that df and f can be replaced by dF and F without changing the 
result (by virtue of Eq. (12)), then the three expressions in brackets can be 
recognized as individually zero simply by virtue of Newton's laws. In fact, we can 
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now see that with these substitutions Eq. (40) is valid even if we don't have 
independent generalized coordinates; this equation applies for absolutely any 
meaning that might be given to the symbols q and O. But only for a holonomic 
system that has been characterized in terms of independent generalized coordi- 
nates can we be sure that by substituting Eq. (31) into Eq. (40) we can obtain a 
complete set of equations free of nonworking constraint forces. This is the 
strength of Lagrange's form of D'Alembertb principle. The combination of 
Eqs. (31) and (40) produces for a deformable body characterized by TI generalized 
coordinates, of which ii are deformational coordinates, the following result: 

A in which m = J p X d f  is the moment about c of forces applied to the undeformed 
body. (See Eq. (35).) It is important to remember that qk describes deformation 
relative to frame f ;  hence Cpk is zero if 9k is a discrete coordinate describing only 
the motion of f .  

i .  Systems of particles, rigid bodies, and deformable bodies. By referring to 
Eqs. (28) and (41), one can assemble the equations of motion of a system of 
9 particles and 9 extended bodies, of which the subset 3 are deformable, as 
follows. Here n is again the number of independent generalized coordinates 
characterizing the total system, and iij is the number of deformational coordinates 
of the jth body. 

j. Floating reference frames. It is important to remember that we have, at this 
point, not yet made a commitment to a particular choice of the reference frame 
f j ,  with respect to which the deformation of the jth body is measured. Our only 
concession has been to fix the mass center c j  of the jth body in f j ;  this step was 
taken when, after Eq. (37), we replaced the arbitrary point p with c to simplify 
our expression for generalized inertial forces. Now we can see that we can 
exercise our remaining freedom in the selection of the floating reference frames 
in such a way as to further simplify the equations of motion by imposing as a 

I 
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constraint a single vector equation (or three scalar equations). This constraint is 
usually chosen in such a way as to simplify the angular momentum of the 
deformable body referred to its mass center, which is designated as H in Eq. (41). 
Eq. (39) provides for H the expression 

A 
H = / ( p  + u) X (c + u) dm = /(p + u) X [o X ( i j  + u)] dm 

+ /(B + u) x ii dm = I 0 + /(? + u) x il dm (43) 

where 

I \[(p + u) (p' + u) u - ( p  + u) ( p  + u)] dm 

with U the unit dyadic. 

One obvious choice of a constraint equation is 

\(si + u) x iIi dm = 0 

implying that the reference frame is chosen such that time varying deformations 
(represented by &) make no contribution to the angular momentum about the 
system mass center. Thus the relative angular momentum of the body with respect 
to this: frame is zero. We designate this reference frame as f T ,  and call it the 
Tisssmd fimne, folloving the convention in astronomy (Ref. 2). In  terms of scalar 
co$lponents of and 01 %I a dextral orthogonal vector basis fixed in f T ,  Eq. (44) is 
equivalent to the three eqtwtions 

+-r, dt - &u,) dm + (U2iL.l - U A )  dm = 0 (454 

&/(Flu, - p2u1) dm + - ti.'&,) clm = 0 dt 

With these constraints, the system angular momentum is simply 

An alternative to the Tisserand frame that provides simpler constraint equations 
but results in less simplification of the equations of motion is used by Buckens 
(Ref. 3) in the form 

/ p X u d m = O  (47) 

This constraint has the consequence 

/ p  x B dm = 0 
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so that the system angular momentum becomes 

If second degree terms in u and 6 are neglected in H, or if deformations are 
restricted in such a way that u X k = 0, this frame (which we'll call the Buckens 
frame f B )  can also be interpreted as the frame with respect to which relative 
angular momentum about the mass center is zero. (This is the interpretation 
offered by Milne in Ref. 42, for example.) As will become apparent in Subsec- 
tion B-1, the second degree deformation terms appearing in the integral in Eq. (48) 
appear also in the kinetic energy expression, where they can contribute linear 
terms in deformation to the equations of motion. For this reason, it remains im- 
portant to distinguish between the Buckens frame f,$ and the Tisserand .frame f T .  

In terms of scalar components of j5 and u for a dextral, orthogonal vector basis 
fixed in the Buckens' frame, Eq. (47) becomes 

A third common choice for the floating reference frame is the principal axis 
frame (here designated f p ) ,  in which the principal axes of inertia of the deforming 
body for the mass center remain fixed. If dextral, orthogonal unit vectors plr p2, p3, 
fixed in the principal axis frame f p ,  are assembled in the column array {p}, then 
the inertia dyadic I appearing in Eq. (43) has the property that the inertia 

matrix I = {p} I {p}' is diagonal. In vector-dyadic terms, this means that - A  

( S a )  pl I *p*  = pz-I *p3 = p:< I pl = 0 

These three scalar equations can be written in matrix terms as 

UJTTUk = UjT J [(is' + u') ( p  + u)U - ( p  + U) (p' + u)'] dm U'; = 0, j #  k 
(3%) 

where 

A 
U' = [100]' 

A uz = [010]T 

u3 = [001]' 

and 7 and u represent vectors F and u in vector basis { p}. Since 
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for j # k, Eq. (50b) has the scalar implications 

where Pj fi p pi, and so forth. Eq. (50c) applies for all values of u j  and uk, includ- 
ing zero. Thus Eq. (50c) has the further implication 

Because Milne (Ref. 42) ignores second degree terms such as U p k ,  his representa- 
tion of the principal zxis frziac mwtraifit eqmtions differs from Eq. (Sod) in the 
absence of these terms. As noted previously, such second degree terms, when appear- 
ing in an expression for kinetic energy, can give rise to first degree terms in 
Lagrange’s equations of motion (as developed in Subsection B-1). For this reason it 
may be necessary to distinguish Milne’s approximate principal axis frame from that 

’Thus we see that there exists a variety of reference floating frames that appear in 
the literature as measures of the “mean motion” or ”gross motion” of a deformable 
body, and with respect to which deformations are measured. Since this choice of 
reference frame is implicit in the work of many authors (who may only speak vaguely 
of “rigid body modesm), it is important to recognize that there is no universal or 
uniquely advantageous choice for thi.. frame. For this reason we have left the choice 
open in recording &. (42) as our final version of Lagrange’s form of D’Alembert’s 
principle for and deformable bodies characterized 
by independ will see in subsequent sections deal- 
ing with deformable bodies that the question of establishing a floating reference 
frame continues to arise, but we will not make a specific choice in this report until 
specific problems are considered. 

k. An example. Because confusion often surrounds the floating reference frame 
and the manner in which the constraint equations defining this frame are used in 
formulating equations of motion, a brief illustration may be worthwhile. For this 
purpose we consider the combination of a deformable body and two identical rigid 
bodies shown in its undeformed state in Fig. 4a. Milne (Ref. 42) uses this example to 
distinguish between the Tisserand (zero relative momentum) frame and the instan- 
taneous principal axis frame by sketching the deformed shape shown in Fig. 4b and 
labeling axes fixed in the two reference frames. By inspection of the deformed 
shape one can readily see that the principal axes must, in a qualitative sense, be as 
portrayed by dashed lines in Fig. 4b; that is, for this pattern of beam vibration, 
the two rigid bodies must be in the second and fourth quadrants, on opposite sides 
of the p, axis through the mass center c, and cannot lie directly on that axis or in the 
first and third quadrants. In contrast, the Tisserand frame axes can adopt the orien- 
tation relative to the deformed body suggested by the solid axes in Fig. 4b, with the 
rigid bodies falling into the first and third quadrants established by these axes. For 
a special geometry and mass distribution, the axis T, would pass through the mass 
centers of the rigid bodies, and as the mass center moment of inertia of each of these 
rigid bodies diminishes relative to that of the beam about its mass center, the solid 
(Tisserand) axes must approach alignment with the dashed (principal) axes. 

I 

I 

I 
L 

I 
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Fig. 4. An example illustrating two floating reference frames: 
(a) undeformed; (b) single-mode vibration 

It is physically possible for the system in Fig. 4a to respond to an initial deforma- 
tion of the sort portrayed in Fig. 4b (with no initial inertial velocities) in such a way 
that all parts of the system move harmonically in phase at the same frequency rela- 
tive to the Tisserand frame, while that frame remains inertially stationary. In the 
course of such a motion, the axes of the principal axis frame must experience an 
angular oscillation in inertial space at the same frequency, following the motions 
of the deforming body. 

To see exactly how the constraint equations defining the reference frame are used 
in a dynamical description of a typical mechanical system, we will record the equa- 
tions of motion of the system in Fig. 4 twice, using first the Tisserand frame and 
then the principal axis frame. In each case we will consider the force-free, torque- 
free motion, and permit only the single mode of deformation depicted in Fig. 4b. 
Thus the system has seven independent degrees of freedom (six for the frame and 
one for the motion relative to the frame). 

Without yet designating either f r  or f,. as the floating reference frame, we can 
.-._. \vlite equations of motion for our system from Eq. (41) as follows (noting that 
f = m = O ) :  

where q,  is the single distributed deformation coordinate, and tpl the corresponding 
mode shape. If we further identify q2, qs,  q4 as the 1-2-3 attitude angles of the frame 
f ,  and q5, 9,;. q7 as the Cartesian coordinates of mass center c in inertial space, so 
that in terms of inertially fixed unit vectors i,, i,, i, we have kc = $,il + G6i2 + &i:,, 
then the equations of mass center translation take the trivial form 
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regardless of the choice of f .  The system rotational equations become, for either 
choice of f ,  

but this time the symbol o has differeat meanings for different choices of f. Recall 
that o is the h W  an& velocity of hame f ,  so it clearly differs for the Tisserand 
frame and the principal axis frame (see Fig. 4b). Moreover, for the Tisserand h e ,  
H is mereIy I 0, as in Eq. (M), while €or the principal axis frame one must accept 
Eq. (43) for E. For our example Eq. (43) combines with Eq. (31) to provide 

H = I o + ( p  + qlql) X q1 dm o1 = I o + X 01 dm cjl I 1 
only by expgndinglthe inertia dyadic I in our two expressions for H can we make 
visible any advantages inthe choice of the principal axis frame; with this selection 
we know that the imxtia qaatrix isdiagonal in the vector basis fixed in f p ,  while it is 
generally full for the vector basis fixed in f T .  

The seventh and hal equation of motion requires the selection k = 1. Since 
fir/aGl = ao/i3Gl = 0 in either case, the equation of vibration becomes 

0 = / 91. {qq, + 2 0  x 9*G1 + Ll x ( p  + 9 '4 , )  + o x [o x (6 + 91q1)1} dm 

0 = / {q1  qAj, + i, ( P  x 91) + 0 x [o x (6 + 9'q1)] q ' }  dm 

0 = /9"9' dm& + 3 .  / P  x 91 dm + o * / [ o  x ( p  + q'q,)]  x q n m  

O = / ~ l ' ~ ' d m i j , + i , . / p X g ' d m - o . / [ 9 ' . t ' U  -9'9'1dm *oq1 

or 

or 

or 

- o * j [ P ' q 1 U - p p ' ] d m ' O  (5%) 

This is the equation of vibration for either selection of frame f ,  but the symbols 
have different meanings in the two cases considered. As shown in Fig. 4b, the 
"mode shape" q1 describing displacement relative to f p  is different than that for f T ;  
consequently the unknowns and q1 will emerge from the system equations as 
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different pairs of functions of time in the two cases. We can shed further light on 
these differences by examining just how the mode shape 9’ for f~ differs from 
that for f T .  

For the Tisserand frame f T ,  the constraint Eq. (44) implies in this case that 
J X 9’ dm = 0, thereby permitting one integral to be dropped from the vibration 
Eq. (52g). This integral is not zero if we select the principal axis frame, but instead 
the inertia dyadic appearing in H and hence in Eqs. (52d)-(52f) is a diagonal 
matrix in vector basis pl,  p L ,  p,. 

Thus far in this example we have treated the mode shapes 9’ as somehow giuen 
for both the Tisserand and principal axis frames (as depicted in Fig. 4b). But if we 
plan to solve any real problems we must have a procedure for finding these vectors. 
In practice they are sometimes merely prescribed on the basis of engineering judg- 
ment, without guaranteeing the satisfaction of any of the constraint equations 
presented here. Then we have no physical meaning attached to the floating reference 
frame f ;  it is a reference frame whose motion may be fully described by a properly 
formulated set of equations of motion, and the results may be quite meaningful, 
but we must remain vague about the definition of the floating frame and allow the 
equations of motion to define it. (Of course we cannot then simplify H as for the 
Tisserand frame or the principal axis frame.) 

As noted previously, the mode shapes 9’ sometimes emerge as eigenvectors of 
ordinary differential equation sets obtained by separating the partial differential 
equations of vibration of a continuum. In most engineering practice, the vectors 93 
are obtained as the eigenvectors of a set of linear constant-coefficient ordinary 
differential equations that describe the small vibrations of a discretized model of 
the system. In either case, when 9’ is obtained formally as an eigenvector indepen- 
dent of all other eigenvectors of the system this has the implication that the system 
is capable of a motion in which q, is some function of time and all q k  for k # i are 
zero; thus the equations of vibration in the various “normal modes” of the system 
are uncoupled. 

Among the eigenvectors describing the possible independent motions of an 
unsupported force-free system there will be six describing translations and rotations 
of the system without deformations; these are the so-called “rigid body modes.” 
Although the equations of motion for the generalized coordinates corresponding 
to the rigid body modes are formally excluded from our system equations and 
replaced by coordinates describing the motions of the frame f ,  it is clear enough 
that for small motions the rigid body model coordinates describe the motion of 
some floating frame f .  For such small motions, one could linearize the vibratim 
equation preceding (dropping second degree terms in the set ql ,  ( i l ,  q,, i>, 0) to find 

191 *qJ1dmijl + i ) q p  x Cp’dm = 0 

Since the equations of motion in the rigid body modal coordinates (represented by 
o of frame f )  must be uncoupled from those involving q l ,  the set of eigenvectors 
must be such that in this case J X 9’ d m  = 0. By referring to Eq. (41) you can 
confirm that this must be a general property of the eigenvectors that correspond to 
free vibration and uncouple from motion in the rigid body modes. Thus we conclude 
that at least for small vibrations the reference frame implied by the rigid body 
modes from a free vibration modal analysis is the Tisserand frame f T .  This is the 
most compelling advantage for the use of this reference frame. 
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3. Lagrange’s form of D’Alembert’s principle for simply constrained systems. 
Equations (8), (ll), (13), (16), (20), (28), and (41) of the previous section all repre- 
sent alternative versions of Lagrange’s form of D’Alembert’s principle. For present 
purposes, we can concentrate on Eq. (20), which is a convenient formulation for a 
system of N particles. Because the n generalized virtual displacements in Eq. (8) 
are independent, Eq. (20) produces n independent differential equations, which 
provide a complete set of equations of motion (assuming that all constraints are 
in the nonworking class). But if the various generalized coordinates were related 
by a constraint equation, we would not be able to obtain from Eq. (8) as many 
independent equations as we have generalized coordinates unless we violated 
constraints with the virtual displacements, and if we violated constraints we would 
not succeed in our objective of eliminating unknown nonworking constraint forces. 

In the present section we will discover that we can circumvent the problem of 
obtaining a complete set of equations for a wider class of problems than is 
covered by the material in the preceding section. In this development we will 
initially focus attention on systems of particles, with the understanding that exten- 
sion to tigid bodies and amtinua is a straightforward task that would require 
repetitiom of some of the leagtbr development of the previous section. 

If again we let ql, .--,Q~ comprise 811 arbitrary set of generalized coordinates 
(whicb need not be independent), then we have Rj = Rj (91, a * - ,  qv, t) as in Eq. (6), 
and 

The’w&ors 3Rj@~h = aRJ3qk are not independent if the generalized coordinates 
are related by constraint equations. Suppose however that the constraint equations 
can be written in the scalar form 

or equivalently the matrix form 

AG+B=O (55) 

A A A where A = [Ask] is an m by v matrix, B = { B8} is an m by 1 matrix, and 4 = { i l k }  

is a v by 1 matrix. Holonomic constraint equations (see Eq. (9)) can always be 
placed in the form of Eqs. (54) and (55) by differentiation, and nonholonomic 
constraints in the class called Pfaf in  or simple have this structure also. The 
matrices A and B generally depend on 9 and t (but not on 4), so that it may be 
impossible to integrate these constraint equations to find m of the generalized 
coordinates in terms of the remaining n (where n = V - m, as previously). This is 
always theoretically possible for holonomic constraints, but it may be very dif6- 
cult even in this special case. It is however always a relatively straightforward 
task to solve for m of the generalized velocities in terms of the remaining n gen- 
eralized velocities and the full set of v generalized coordinates. We can for exam- 
ple partition Eq. (55) to obtain 

A 

[Amn! A””] {$} + {B} = {0}  (56) 

P 
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where if has dimension n by 1 and qc dimension rn by 1, with the superscripts on 
the A partitions signaling their dimensions. Equation (56) is then equivalent to 

[A'""] (0') = - [A""] {$} - {B} 

or 

If now Eq. (53) is rewritten in the form (see Appendix A) 

then we can use Eq. (57) to write Rj in the form 

Here we have written Rj as a linear combination of n of the v generalized veloci- 
ties. If we unburden ourselves of the explicit matrix notation in Eq. (58), we can 
rewrite this expression symbolically in the form 

where VL and V t  are vectors that may depend on ql, ..., qv and t .  In p:actice it is 
often easiest to obtain these vectors by using ad hoc procedures to find Rj in terms 
of only n of the original v generalized velocities, and then identifying the coeffi- 
cient of (jk as Vi.  k 

If we compare Eq. (59a, b) to Eq. (18), it becomes apparent that Vj, for the non- 
holonomic system stands in parallel to aR,/aqk = aRj/a4k for the holonomic sys- 
tem, and V, has a similar parallel to ?R/at. The n vectors Vi are independent 
quantities, which can be substituted for aRj/aQk in Eq. (20) without sacrificing the 
feature of Eq. (20) as the source of n independent differential equations. Thus the 
new equations of motion become (with n replaced by P in Eq. (12)) 

These equations are not sufficient to fully describe the system behavior, how- 
ever, because in general they will involve all of the original generalized coordi- 
nates 91, . . . , q v  and their first and second time derivatives. These equations of 
motion must therefore be augmented by the m constraint equations appearing in 
Eq. (54) or Eq. (55). If none of the unknown constraint forces appearing in f j  in 
Eq. (60) survives the dot multiplications and summations in that equation, then 
they are classified as nonworking constraint forces, and Eqs. (60) and (54) com- 
bine to form a complete set, which is sufficient for the determination of ql ,  ..., qv. 
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Equation (60a) is in a convenient form for a multiple-particle system, but this 
equation is awkward for a system of rigid bodies or deformable continua. For 
each continuous body in the system, one can write the generic expression for the 
inertial velocity of a point (or differential element) of the body as R, and then 
define VI; from an expansion parallel to Eq. (59a), so that 

Equation (60a) is then generalized to include continua by the addition to the N 
particle sum of such terms as 

/Vk jdf - i idm) (ab! 

for each deformable continuum. Although this expression could be expanded as 
in the previous sections, we will forego this labor, and concentrate on the special 
case of the rigid body. 

Eq. (a b) is sometimes referred to as hgrange’s form of D‘Alsmhert’s principle 
for simply coMtmined systems; the development presented here follows &ne 
(Ref. 40). 

For a rigid body,.it is most convenient to express the gene“? inerti?! velocity 
R and acceleration R in terms of the corresponding quantities Rc and Rc for the 
ina~s center (see Fig. 3 in Subsection A-2). Then we have 

and 

R = R c +  & x  p + 0 x (0 x p) (W 
where o is the inertial angular velocity of the rigid body and p is the generic 
position vector from the mass center. 

In parallel with Eq. (59a), wc’ can define the quantities V; and ok by the 
expansions 

and 

and then write R as 

(594 

Comparison of Eqs. (59b, c) produces the identity 

i 
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When this result is substituted into Eq. (Wb), we find that each rigid body 
contributes to the equations of motion the quantity 

By mass center definition we have J p drn = 0. If we incorporate the definitions 

f= \df ,  m b / p X d f  

.%t=/dm, A H i \ p X ( o X p ) d m  

we find that the preceding expression becomes 

(The expressions in parentheses we recognize to be zero from the Newton-Euler 
equations .) 

Thus for a system of 9' particles a n d 9  extended rigid bodies, the equations of 
motion (6Oa) become 

If these n second order differential equations in the v variables ql ,  ..., q. are aug- 
mented by the rn constraint equations (Eq. (EA)), and all unknown constraint 
forces classify as nonworking constraint forces, then the differential equation set 
is complete. 

4. Kane's quasi - coordinate formulation of DAlembert's principle. T. R. Kane has 
provided in Refs. 36 and 40 a generalization of the method of the previous section 
that often leads to substantial simplification of the equations of motion. Whereas 
Eq. (Ma) of the, previous section consists of the sum of N dot products of 
Fj - mjRj with quantities Vf as defined in Eq. (59a), we now write instead for 
the multiple-particle case the sum of N dot products of Fj - mjRj with a gen- 
eralized definition of Vi as provided by 

f 

with til;* ., u,, defined by the nonsingular (invertible) relationship 
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or its matrix counterpart 

with u and w defined as n by 1 matrices, and W a nonsingular n by n matrix. 
Evidently Eq. (59a) is the special case of Eq. (64a) corresponding to W k a  = 8 k s  

and tch- = 0 in Eq. (64b), or W = U and w = 0 in Eq. (64c). Thus the definition 
of V,.! implied by Eq. (64a) can stand as the general definition, subsuming that 
found in Eq. (59a). 

The validity of Eq. (60a) for the more general definition of Vi is guaranteed 
by Eqs. (1) and (121, with Y replacing n in the latter. Moreover, the new vectors 
Vi (k = l , . .-,n) can remain an independent set, assuming that the n quantities 
u1;**,u,, in Eq. ( a b )  are each different linear combinations of the n generalized 
velocities 01,--.,4,,, and the latter are (as in the previous section) a subset of the 
original Y generalized velocities GI, -.-,iy obtained by imposing the canstraint 
equations found in Eqs. (54) through (57). 

u k  (k = I,..., n) in Eq. (ab)  might in special instances be them- 
selves recognizable hs time derivatives of generalized coordinates; this is clearly 

choice of constants for w k a  and t(ik, and for specid functions of the generalized 
coordinates as well. More generally, however, the quantities ul,---, u, are not the 
time derivatives of any kinematical variables that qualify as generalized cwrdi- 
nates. The functions ul, - - *, u. are classically called deriwtives of quasi-coordinates 
(see p. 41 and Ref. 45, p. 197). The most notable examples of functions in 
this e the scalar components of angular velocity in an orthogonal vec- 
tor basis. 

A A A 
the Case when w k a  = 8 k .  and t(ik = 0 SO that Uk = o k ,  but it fOuOWS &O fOr m y  

Following Kane (Ref. 40) for the multiple-particle case, we may define the 
scalars 

and rewrite Eq. (60) in the form 

The quantities f k  and f ;  are generalizations of the quantities Qk and Qi defined 
for systems characterized by n independent coordinates in Eq. (14). Kane applies 
to f k  and f ;  the same names he has given us for Qk and Q;; thus f" is called the 
kth generalized active force and f ;  is the kth generalized inertia force. Equa- 
tion (66a) is thus a generalization of Eq. (15) with an important difference; even 
when unknown constraint forces are in the nonworking class, Eq. (66a) is not 
sufficient to solve for the unknowns 9,; e . ,  qv in the problem, and the constraint 
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equations in Eq. (54) must be incorporated in the system of equations to be inte- 
grated simultaneously, Of course Eq. (sea) can be written as the matrix equation 

f + f ' = O  (66b) 

A 
where f = {fl;..,fn}' and f' = {f:,...,f:}' . Then the constraint equations in the 
matrix form shown in Eq. (55) become appropriate. 

Since we have constrained the definition of Kane's variables ul; * ., un in Eq. ( a b )  
in such a way that one can always invert this equation to find 

i j  = ~ j ( ~ ~ ; ~ . , ~ , , q ~ ; . . , q ~ , t ) ,  f o r j =  l ; . . , n  

we are assured of the possibility of writing Rj in the form of Eq. (64a), and hence 
obtaining Rj = R j  (&;. ., U,, ul;. ., u,,, (il; * ., ( iv,  q l ; .  ., qv, t )  for substitution into 
Eq. (65b). With this substitution the final equations of motion, Eq. (66a), become 
n first order differential equations in the n + v unknowns u l ; * ' ,  u,,, q1;*-, qv. To 
obtain a complete formulation, the n equations of motion (Eq. (66a)) must be com- 
bined with the n kinematic equations (Eq. (64b)) which define Kane's variables 
and m constraint equations in Eq. (54) or Eq. (55). Since 2n + rn = n + v = 2v - m, 
this combination provides a complete set of equations, repeated here as the matrix 
equations 

(55) A c j + B = O  

(644 u=WTcj+w 

Although these equations have been developed here only for a multiple-particle 
system, they are readily extended by the procedures of the previous section to 
apply to systems of 9 particles and 23 rigid bodies, or to nonrigid continua. By 
comparing Eqs. (6Oc) and (65) one can see that Kane's equations in this case are 
still represented by Eqs. (66b, 55, and Mc), with the substitution for Eqs. (65a, b) 
of the expressions 

and 

CD m 

In these equations the vectors Vkej and m i  are obtained from the following gen- 
eralization of Eqs. (62), following the pattern of Eq. (Ma): 

A n  
i t j  = vi* uk + v,c,, j = 1, ..., 9 (64 

k = 1  

(65f) 
A n  

mii(k f O f ,  j = 1;..,23 
k = 1  

I 

r 
, 
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As presented in Refs. 36 and 40, Kane’s method is limited in application to 
particles and rigid bodies, but extension to deformable continua is straightforward 
if deformations are limited to those that can be characterized by a finite number 
of generalized coordinates, q, ,  ..., 9 ~ .  In this case Eq. (66a) still applies if f k  and 
f ;  are defined by 

where v k  is defined by 

f k  0 /Vk df 

A 
f ;  = - /Vk*Rdrn 

and us is d e b d  by Eq. (64). 

Equations (Sg, h) for h e ’ s  method are parellel to Eqs. (SZa, b) for Lagrange’s 
form of DAlembert’s principle. Just as the latter were manipulated to obtain 
more explicit results in the form of Eq. (41), so also Eqs. (Sg, h) would have to 
be manipulated to obtain from their sum an appropriate final form of the equa- 
tions of motion. 

B.bgTWt@SEqWiWi6 

1. L a w ’ s  equations for independent generalized coordinates. In combina- 
tion, Eqs. (19a) and (20) become 

Equation (67) provides yet another statement of Lagrange’s form of D’Alembert’s 
principle for holonomic systems; the resulting set of equations is complete if all 
unknown constraint forces are of the “nonworking” class defined by Eq. (1s). To 
apply these equations directly, one must undertake the chore of calculating Rj for 
each particle in the system. Lagrange observed that he could replace the left side 
of Eq. (67) with a somewhat simpler expression involving the kinetic energy, as 
defined for a system of N particles by 

This step can be accomplished with the expansion 
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where in the last step we have utilized Eq. (17). Substituting Eq. (68) into this 
equation and reversing the differentiation sequence in the final term provides 

Thus Eq. (67) adopts the familiar form of Lagrange’s equations for independent 
generalized Coordinates. 

In matrix form, with the conventions of Appendix A, Eq. (70a) becomes 

If the generalized force matrix Q contains only conseruatiue forces, then by 
definition it can be written as 

Q = -av/aq 

where V is a scalar called the potential energy. For systems in this class it is 

customary to define the Lagrangian 1’ = T - V and to write Eq. (70b) as A 

Having obtained Eq. (70c) as a representation of the equations of motion of a 
given system in terms of the independent generalized coordinates q l ,  .. ., qn in the 
matrix 9, we can now observe that if we make .a transformation from 9 to a larger 
set of v redundant coordinates in the matrix q’, and transform L ( q , q , t )  to 
L’(q’, ;I’, t ) ,  then the v scalar equations of motion in the redundant coordinates 
can be written (see Ref. 43) 

(7od) 

This equation must be augmented by constraint equations if we are to obtain a 
complete set. 

The generality of this result is limited by the hypothesis that there exists in the 
first place a set of independent generalized coordinates. The procedure in Sub- 
section B-2 will not be so restricted. I 

a. Kinetic energy expressions. The utility of Eq. (70) in comparison with 
Lagrange’s form of D’Alembert’s principle depends upon the difficulty encoun- 
tered in calculating the kinetic energy T. The definition of T in Eq. (68) is in a 
convenient form for a system of particles, but more compact representations are 
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more useful for systems of particles and rigid bodies and for continuous distribu- 
tions of mass. As noted in the footnote following Eq. (l), we will not hesitate to 
apply Eq. (70) to continuous distributions of matter, even though strictly speaking 
we derived Eq. (70) only for a system of particles finite in number. In application 
to a continuum, we replace Eq. (68) by 

a 1  
T = I/ R Rdm (71) 

where the integration extends over a material system of constant mass and R is 
the position vector locating the differential mass dm relative to an inertially fixed 
point. 

When the physical system is idealized as a collection of 9 particles and 9 rigid 
bodies, it is convenient to use Eq. (71) for each rigid body, treating it as a rigid 
continuum. Then if Rt is the inertial velocity of a point p fixed in the body, and 
r is the generic pition vector from p to a field point of the body, we have for 
each rigid body the kinetic energy 

T = i / R * R d m  

- '/ ( R p  + i) ( R p  + i)dm -3  

1 
2 = -L'*t*R'' + R P - 0  X (o X r) (a X r)dm 

where 3f is the mass of the rigid body. The integrand of the final term can be 
expanded as 

(W X r) (W X r) = w r X (0 X r) 

= 0 .  - rr*  01 = O*[r*r  U - rr] * W  

where U is the unit dyadic. If now we introduce the inertia dyadic for point p as 

Jp f I (r r U - rr) dm (72) 

and use the mass center definition to write 

where rc is the position vector from p to the mass center c of the rigid body, then 
we have 
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Thus for a system of 9’ particles and rigid bodies, the kinetic energy is given by 

Finally, the physical system might be idealized as a set of 9 particles and 
9 extended bodies, of which the subset 3 is deformable. Then for each deform- 
able body we can introduce a reference frame f in which a point p remains fixed, 
and write for substitution into Eq. (71) 

* d  
R = RP + - at (r + u) 

I 

where r is fixed in the frame in question. If now 6 is introduced to symbolize the 
time derivative of u in this reference frame f ,  we have 

and for a deformable body 

with 

representing the time-varying inertia dyadic of the deformable body referred to p .  

At this point we have not yet established a unique identity for the floating ref- 
erence fraxm f we have been using in our expression for the kinetic energy of a 
deformable body; we have simply required that p and r be fixed in f ,  and this con- 
straint leaves open a myriad of possibilities, each with its own p and r-vectors. 
The same issue arose in the earlier discussion of continuum dynamics (see Sub- 
section A-2), and in that context it was noted that particular choices of this refer- 
ence frame could be made to simplify the expression for the angular momentum 
H in Eq. (43); now we can see that these choices also simplify T ,  and correspond- 
ingly reduce the complexity of the equations of motion appearing as Eq. (70). 
Specifically, if we let p be the mass center c of the deformable body, the vector rc 
and the integral Ju dm disappear from T in Eq. (76). We can further restrict the 
reference frame by requiring that it rotate in such a way that Jr X udm = 0. 
The reference frame meeting these restrictions we have called the Buckens frame 
fLI. With these restrictions, the kinetic energy in Eq. (76) becomes 
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where I is the time-varying inertia dyadic for the deformable body referred to its 
mass center. This equation must be accompanied by the constraint equations 

/udm = 0, I r  X udm = 0 (79) 

which were previously presented as Eqs. (37) and (47). 

As noted in Subsection A-2, the selection of the Buckens frame as the floating 
reference frame f with respect to which deformations u are to be meartred is o d y  
one of a variety of reasonable choices. One may instead choose to work with the 
Tismand fmme, fT, with respect to which the mass center is fixed and the angu- 
lar momentum is zero. Then the constraint equations become the more complex 
relations 

(previously presented as Eqs. (37) and (44)), and the kinetic energy simplifies to 

Yet another possibility is to choose the principal axis frame f p ,  such that the 
mass center and the principal axes of the deforming body remain fixed in it. Then 
if p,, pz, and ps are orthogonal unit vectors fixed in f p  and aligned with tlie mass 
center principal axes of the body when undeformed, we have the constraint equa- 
tions (see Eqs. (37) and (Sa)) 

The kinetic energy in this case would become 

1 * *  1 
2 2 T = .,cUR"*Rr + - 0 0  I o + W *  /(r + u) X &dm i 2 ,  .'&dm (83) 

The advantage of this choice stems from the fact that one knows in advance that 
the inertia matrix I representing I in the pl, pz, p3 vector basis is diagonal. 

Since there may be advantages in any of these choices of the floating reference 
frame (and perhaps also in other options, including the possibility of fixing the 
reference point p at some connection point or other point of the physical system), 
we shall make no commitment here, retaining the general form for T provided in 
Eq. (76). If now we return to the consideration of a physical system idealized as 
a collection of 9 particles and 9 extended bodies, of which the subset 3 are 
deformable bodies, we obtain the system kinetic energy as 

I 
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b. Relationship between Lagrange’s equations and Newton’s particle equations. 
In attempting to compare the utility of Lagrange’s equations for independent gen- 
eralized coordinates to that of Lagrange’s form of D’Alembert’s principle, we must 
recognize that the link between them is very direct; the journey from Eq. (67) to 
Eq. (70) involves nothing more than a restatement of the left side of Eq. (67) in 
terms of the kinetic energy. Thus Eqs. (67) and (70) differ in appearance only, and 
must give identical results. Because Eq. (70) involves only scalars, and requires 
only enough vectorial kinematics to calculate inertial velocities (rather than accel- 
erations), this is usually considered the simpler form for an analyst to work with. 
The advantage would also lie with Eq. (70) for the programmer faced with the 
task of teaching a digital computer to obtain literal (nonnumerical) equations of 
motion using a symbolic manipulation code.(such as FORMAC) and operating on 
a given expression for the scalar T .  In summary we can conclude that for a system 
with independent generalized coordinates it is probably easier to obtain equations 
of motion with Lagrange’s equations than with Lagrange’s form of D’Alembert’s 
principle; but the resulting equations are idcntical, so neither has any advantage 
in solution efficiency. 

The point made in the preceding paragraph is rather obvious for a system of 
N particles, since the transition from Eq. (67) to Eq. (70) is so direct. The equiva- 
lence of Eqs. (67) and (70) for a system of particles implies the equivalence of 
Eqs. (28) and (70) for a system of particles and rigid bodies, at least as long as we 
accept the definition of a rigid body as a finite set of particles with fixed distances 
among them; this equivalence establishes the important relationship between the 
Newton-Euler equations of motion and Lagrange’s equations. Because this rela- 
tionship is important to the method-comparisons that lie ahead in this report, it 
seems worthwhile to establish the link between Eqs. (28) and (70) directly by 
deriving the latter from the Newton-Euler equations, and observing that Eq. (28) 
occupies the middle ground between them. It will suffice here to achieve this deri- 
vation for a single rigid body, since generalization to a system of 9 particles and 
3’ rigid bodies is straightforward but notationally complex. 

c.  Derivation from Newton-Euler equations for a rigid body. We begin with 
Newton’s second law and its rotational consequence for a rigid body, as expressed 
by Euler: 

(85) 

M = H  (86) 

F = 

where (as previously) F is the resultant force on the body, B is the mass, R“ is 
the inertial position vector of the mass center c, and M and H are respectively 
resultant moment and angular momentum referred to c. 
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If the rigid body motion is described in terms of n independent generalized 
coordinates, one can obtain n independent scalar equations from Eqs. (85) and (86) 
as follows: 

This result is evidently a special case of Eq. (28), representing Lagrange's form of 
D'Alembert's principle; there remains the task of proving Eq. (87) to be equiva- 
lent to Eq. (70), representing Lagrange's equations. The equivalence of the left 
side of Eq. (87) and the right side of Eq. (70) is immediate, since we have in 
Eq. (22) already written the generalized force in this form (see Eqs. (12) and (23)). 

It is also easy to show the identity 

From Eq. (78) we can recognize that if we write the kinetic energy T of a rigid 
M Y  as 

I I 

designating T, and T ,  respectively as the transktionul kinetic energy and the rota- 
tional kinetic energy, then the preceding equation becomes 

Thus we have established that Eq. (87) is equivalent to 

In order to establish that Eq. (87) and (70) are identical we need only establish 
the identity 

But Eq. (90) is not so easily proven. 
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The required proof is facilitated by the identity 

1 .  1 . 1 .  - 1  
2 d 2 2 = - H * a  + T o * H - - a * l * a  = a * H - - a * [ w  X I - I  X O ] * O  

= w . H  (91) 

Thus the left side of Eq. (90) is 

But the "chain rule" of differentiation provides 

so that 

- --+-(-) aT,. d X ,  
2q, dt ?(in 

Therefore we have 

But, as in Eq. (93), 

2 dH aH d aH - 
+-7 dt ( ? q a )  

---- 
a q n  nt 2 q a  

Therefore 

So we have 

d o  d aT, dT, d aH am $I.-=- - -- 
aq, dt (aqa)  aqo [dtaqo]*a+H'- aq, 

Comparison of Eqs. (96) and (90) indicates that both are correct only if 

(93) 

(94) 

(95) 

1 
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To prove Eq. (97), note that 

The right side of Eq. (98) is zero because of the purely kinematical theorem' 

aq, dt aq. 
a0 -+ax-- -  - 
age 

Proof of this valuable theorem follows most directly from the definition of angular 
velocity a given in Ref. 40, page 21: if bl, bZ, b, comprise a dextral, orthogonal set 
of unit vectors fixed in body 21, then the inertial angular velocity of b is given by 

o = b, b,b, + bs b1b2 + b, b,b, ( 1 W  

where dot nieans inertial time derivative, so that 

bj = o X bi, i = l;.. , n  (101) 

Since bi = bi ( q , ; . . ,  qn, t ) ,  we can also expand b, as 

thereby establishing the identities 

'Professor T. R. Kane of Stanford University provided the proof of this theorem in personal 
correspondence, and thereby accomplished the key step in the proof of Eq. (W), permitting 
direct demonstration of the equivalence of Eqs. (87 ) and (70). 
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In the following proof of Eq. (gg), the subscript a is dropped from 9. and the 
comma convention is used to represent partial derivatives, as in Appendix A .  The 
left side of Eq. (99) then becomes 

+ h, - (b2,,,b:{ + b2b3,,) + b2,, b3bl + b3.,, b,b, 

, 
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proving Eq. (99), and finally establishing that Eq. (87) is precisely the same as 
Lagrange’s equations in the form found in Eq. (70). 

d .  Relationship between Lagrange’s equations and Newton-Euler equations for 
rigid bodies. Now we are well prepared to make comparisons of Lagrange’s 
equations and the various Newton-Euler formulations that appear in the modem 
iiterature (in particular see Refs. 12 to 15, 18, 38, and 28 to 31, all of which deal 
with multiple-rigid body idealizations). The Newton-Euler formulations of generic 
equations used so widely today all involve linear combinations of dot-products of 
the basic vector equations of translation and rotation. While it may seem 
impotsible to establish a parallel between Lagrange’s equations and some of the 
ingeniartrly Huniptrlated vector equations found in the modem literature, it is 
for the’myltipbrigid body idealizations often a simpler matter to compare these 
madpda&d vectoT equations to Eq. (87), which we have shown to be identical 
to Lagrange’s equations even if very different in appearance. This observation 
will mtiy facilitate the process of comparison in Section IV of this report. 

i 

e. Structure of the mrrtrir differential equations of motion. For purposes of 
numerical integration, it is often convenient to rewrite the equations of motion 
(Eq. 70) in state variable form as a first order matrix differential equation. To this 
end, we define the 2n by 1 matrix 

.y-l 
and write Eq. (70) in the form 

Px = F (104) 

where P and F may depend on x and t .  Any set of second order differential 
equations can be written in the form of Eq. (la), but when the starting point is 
Eq. (70) we can guarantee certain properties of the matrix P that facilitate 
numerical integration. 

Equation (70) requires as input only T = T (cj,q, t )  and Qk ( k  = 1, . . e ,  n). If we 
begin with T in the form of Eq. (71) and replace R by the expansion found in 
Eq. (18), we have 

where Ti consists only of terms in ith degree in the generalized velocities ql; .  a ,  (in. 
The scalars T2, TI, and To may be written in matrix form (using the notation of 
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Appendix A) as 

with 

hl  2 / R;/R,,, dm 

an n by n symmetric matrix, 

T ,  = Q T r -  = p a  

with 

an n by 1 matrix, and 

I 

(106b) 

f 

L 

(106c) 

a scalar. Note that M ,  r, and T,, can depend on 9 and t ,  but not on 9 or any higher 
time derivatives of 9. 

Substituting T into Eq. (70b) provides 

d a 1  
- at (A44 + r) - -(-Q'hlQ a9 2 + rTQ + T , , )  = Q 

Substitute into Eq. (107) the expansions 

r = ~ , , , . ~ o  + r.t 
and (with the summation convention) 

= {Mng.(ly4r4d + h4-4 

= { f j T p 4 f j ) c , , J  + AI, :G 

where (h44)@ is the scalar in row a of MQ, and q' (h4q)n.q defines the scalar in row 
a of the n by 1 matrix (9' (MG)..(,}. This convention permits the substitution 

1 
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The quantities in braces combine in an interesting way when written in terms 
of the summation convention and interpreted in light of the definition of M in 
Eq. (106). Thus 

and from Eq. (106) 

where the n by n matrix 

joins hl and r as a fundamental characteristic of the system. 

Lagrange's equation then becomes 

AI; + ~4.~4 + qt + ~4 +  VUG} = Q + T ,,.,, (109) 

with the definition of the skew-symmetric matrix 

To obtain Lagrange's equations in the state equation form established by 
A 

Eq. (104), we can define u = 4 and write 

where U is the unit matrix. Thus the matrix P in Eq. (104) is symmetric and block 
diagonal with only one n by n fully populated block M, which may depend upon 
q and t. 

I 
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Interest often focuses on the special case in which I,t = 0 and the equations 
of motion are linearized about the null solution q = 0 (so F (x, t) = 0 for x = 0 
in Eq. (104)). In seeking the linearized counterpart to the second order Eqs. (107), 
we can obviously ignore the wholly nonlinear terms hfq and 1/2 (c jTM), ,  4, but the 
remaining terms generally have both linear and nonlinear parts. To accomplish 
the necessary separation we can expand the functions M, r, and To in Taylor series 
in q about q = 0, truncating each series as required for linearization of Eq. (107). 
If we use a supeiscript to identify the degree of the q-terms in the expressions in 
the series, so that we have 

r = ro + p + p + ... ( l l l b )  

( l l l c )  T o  = T: + T i  + T: + . . *  

then inspection of Eq. (107) indicates that linearization requires only 

M = hio (112a) 

r = r" + rl (112b) 

To = T: + T i  + T:  (112c) 

Since l-" is an n by 1 matrix, and T: is a scalar, we can adopt the expansions 

with g and K constant n by n matrices, and with K symmetric. 

Substitution of these approximations into Eq. (109) leaves the intermediate 
result 

M o 9  g4 - g T q  - Kq = Q t T i , ,  (115) 

in which the identities T:,q = 0, Po = 0, and 1':; = 0 have been noted. To get this 
equation in its final linearized form, we must introduce an approximation of Q, 
which has heretofore been unrestricted. As long as we restrict attention to the 
case in which. q = 0 is a solution to the equations of motion (as is required if the 
linearized variational equation is to have any formal significance), then any terms 
in Q that are independent of q and 0 must cancel the term T;, ,  in Eq. (115). As 
long as Q contains no sublinear terms in q or 4 (involving powers less than one), 
we can replace the right side of Eq. (115) by -kq - DG. Then with the definition 
of the skew symmetric n by n matrix 

A GO = g - g T  

and the n by n matrix 

(116a) 

I 

P 

3 

f 

r r + k  (116b) A K = -  
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we can write the linearized variational equation as 

MOq + GO4 + D9 + K q  = 0 (117) 

In the special case for which the generalized force Q is a combination of a COG 

seruatiue force Q" = -V,q for some scalar potential energy V, the matrix k (and 
hence the matrix K) is symmetric. If instead Q is a combination of a conservative 
force Q" plus a restricted Rayleigh damping force Qd = - 9.6 where R = ?4 qTDq, 
then D is taken as a symmetric damping matrix. In general, however, neither D 
nor K need be symmetric. 

In state-variable form, Eq. (117) may be written 

A 
where u = q. 

The alternative form 

(118a) 

(118b) 

may prove advantageous when K is symmetric and D -0, since then the constant 
coefkient matrices on the left and right hand sides are respectively symmetric 
and skew symmtric. (Advantages of this structure are noted in Ref. 31, pp. 5055.) 

% M s  equatbs for simply constraintxi systems. Lagrange's equations 
in the fosm of Eqs. (70), (1091, and (110) are directly applicable only if there exists 
a set of independent generalized coordinates. If redundant variables are employed 
in the presence of this condition, one can retain the form of Eq. (7Od) as shown 
in Ref. 43. We recognize however that in many problems the kinematical vari- 
ables that most naturally emerge in the description of the motion of a system are 
not independent, being interrelated by some kind of constraint equation. We have 
noted that if the generalized coordinates ql , -** ,  qv are related by m holonomic 
constraints (in the form of Eq. (9)), then it is always possihle (if sometimes diffi- 
cult) to solve the constraint equations for m of the variables in terms of those 
remaining, in order to find Y - m independent generalized coordinates. Then we 
can let v - m be n and use Eq. (70). We have also noted, however, that this 
process of algebraic reduction from Y interdependent variables to n independent 
variables is not possible for nonholonomic systems, so for systems in this class 
Lagrange's equations in the forms presented in the preceding section must be 
abandoned entirely. 

In the restricted (but commonplace) case in which the constraints among the v 

generalized coordinates can be written in the simple form (as in Subsection 11-A3) 

2 A& $. B ,  = 0 S = 1;** 7m 
k = l  

(54) 

where Aak = Aak (ql; e ,  qv, t) and B, = B, (ql; e ,  qv, t), we have established in 
Subsections 11-A-3 and 11-A-4 that one can succeed in developing variations of 
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D’Alembert’s principle that produce It equations for the determination of the time 
history of the v generalized coordinates. (Constraint equations in the form of 
Eq. (54) are called simple or Pfafian.) In the present section we will explore the 
possibility of generalizing Eq. (70) to accomplish the same objective. 

Lagrange’s equation in the form of Eq. (70) came originally from Eq. (8), 
repeated here as 

In the derivation of Eq. (70) we took advantage of the fact that we could treat 
each of the generalized virtual displacements independently without violating 
any constraints, and set the coefficient of 6qk in Eq. (119) equal to zero for each 
value of k; in the process we discovered that certain unknown and unwanted non- 
working constrnint forces disappeared from the problem. 

Because the generalized virtual displacements 6q,, . . ., 6qv are simply imaginary 
quantities, we are still free to conceive them as independent quantities, and from 
Eq. (119) write 

2 ( F j -  

These v independent generalized virtual displacements imposed on the system are 
not compatible with constraints, however, and as a consequence the constraint 
forces that disappeared from the equations in the case of independent generalized 
coordinates will no longer disappear. We can still separate Fj into the two parts 
f j  and f:, where the latter represent forces of constraint, and write Eq. (120) as 

but each of the three sums in Eq. (121) is generally nonzero. For contrast, com- 
pare Eqs. ( l l ) ,  (12), and (13) to Eqs. (120) and (121). It is customary to designate 
the two sums on the left side of Eq. (121) as the kth generalized actiue force Q k  

and the kth generalized constraint force QL respectively. We can use Eq. (69) to 
replace the right side of Eq. (121), and write 

The liability of Eq. (122) lies in the fact that QL are generally unknown. To 
eliminate these terms from the equations we must use the constraint equations in 
Eq. (54). 

In differential form, Eq. (54) becomes 
f 

(123) 
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If we wish to impose on the generalized coordinates a set of virtual displacements 
that are compatible with constraints, we must impose the constraint 

noting that there is no variation in t during an imaginary or virtual displacement. 
Had we imposed this constraint upon the quantities S q k  in Eq. (119), we would 
have no work done by the constraint forces, so that 

or 

2 aaqk = 0 (1%) 
k = l  

This itep does not permit the conclusion that QL = 0 for k = 1, * - * , v ,  because 
the quantities dqa(k = 1, * - e ,  v )  in Eq. (US) are related by Eq. (124). W e  might 
choose Y - m of these quantities arbitrarily, say aqHl, e . . ,  8qv, but the remaining 
rn quantities are determined by Eq. (124). Our next objective is to use Eqs. (124) 
and (125) together to obtain a solution for Qlk,  which we can substitute into the 
equations of motion (Eq. 122) in order to eliminate this unknown generalized 
constraint form from the equations. To this end, we introduce m new unknowns 
~~,...,hr(called~gnongennrEHpliers);wemultiply~, by Eq. (124)fors= l;*-,rn, 
and add the results to obtain (after reversing the summation sequence) 

Clearly this equation is valid no matter what values we attach to AI, - * . ,  A,, and 
since this double sum is zero there can be no harm in adding it to Eq. (125) to 
obtain 

k =-I L X = I  J 

We are now free to choose A,, ..,A,,, such that the coefficients of Sql, * . - , 6 q ,  are 
zero, or 

(128a) 

Then we are left in Eq. (127) with only terms involving the v - rn quantities 
69m+l, .-., 69,, and these we are free to treat as independent variables. Thus Eq. 
(127) becomes 

! 

f 

r 
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implying that 

46 

(128b) 

0; = - 5 AxAnk k = I;.., 11 (129) 
, % = I  

Substituting this result into Eq. (122) provides the required equations of motion 
in the form 

Because the Lagrange multipliers hl, . . ., introduce m unknowns into the prob- 
lem in addition to the Y generalized coordinates, Eq. (130) does not in itself 
constitute a complete set of governing equations. These equations must be solved 
in conjunction with the kinematical constraint equations as presented in Eq. (54). 
In combining these equations, it is most convenient to work with the constraint 
equations in their matrix form (as in Eq. (55))  

(55) A q + B = O  

and to recast the dynamical equations (Eq. (130)) in the matrix form 

(131) 
d - (T,$ - T,,, = Q - ATh at 

where A is the m by 1 matrix with elements A ~ ,  . . ., &,,. After noting the equivalence 
between Eq. (70b) and Eq. (107), we can write Eq. (131) in the more explicit form 

~ i j  + AT,i = Q + T , , ~  - r + [ ($w),, - M + r:] (132) 

and then combine Eqs. (132) and (55) in the system equation 

A where again u = 4, and the terms M and can be expanded as after Eq. (107). 

It is the 2” + m scalar equations in Eq. (133) that must be subjected to numeri- 
cal integration. The coefficient matrix on the left side is not well designed to 
facilitate this operation. 

i 

I 
Equation (133) applies to simple nonholonomic systems, so that among the 

methods developed in this report it finds its competition in Lagrange’s form of 
D’Alembert’s principle for simple nonholonomic systems (Eqs. (60) and (54) of Sub- 
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section A-3), and Kane’s quasi-coordinate formulation of D’Alembert’s principle 
(Eqs. (66b), (55), and (Mc), collected at the end of Subsection A-4). Since 
Lagrange’s method is a special case of Kane’s, it will suffice to compare Eq. (133) 
to those collected at the end of Subsection A-4. The most obvious difference is in 
the number of equations. Whereas Kane requires only 2v - m scalar equations, 
the Lagrange multiplier method involves 2v + m, sufficient to solve for q,, . - e ,  qv, 
and ill, * . . , and hl, . -, A,,,. Unless all of these variables are required as problem 
outputs, Kane’s method has an obvious advantage for constrained systems. In 
application to unconstrained systems Kane’s approach still has attractive features 
for some problems because of the possibility of choosing the u’s as the kinematic 
variables, but in this case it must compete with Lagrange’s generalized coordinate 
equations in the form of Eq. (110). The explicit structure of Eqs. (110) and (133) 
c m t m t s  with the CcEectim of stpatiom (Mbj, (55j, rind (Mc) that represent 
Kane’s method. Because the expressions for f and f’ depend upon the physical 
system under consideration, it is somewhat more dif6cult to cast Kane’s equations 
once and for all in a generic form. This flexibility in formulation can be an 
impmtant advantage to the analyst seeking an efficient ad hoc approach to a given 
problem, but the formal explicit structure of the Lagrangian generalized coordi- 
nate eqWbns mny der advantages when the objective is a multipurpose com- 
puter Pl”0gHtm. 

3. L a ~ g e ’ S  quasi- . equations. In the two subsections preceding, 
Lagrange’s equations have been written in terms of a system of generalized 
coordirmtes, which we have defined as a set of scalar functions of time ql, .--, q.  
that rJh. define the codguration of the system at all points in time. In Subsection 
B-1 thew scalars are independent, and in Subsection B-2 they are related by a 

but in either case the equations of motion emerge 
equations in the q’s. Moreover, the basic Merent id  

cases (typified by Eqs. (70) and (130)) involve in their 
only scalars, and s p e c i 6 d y  include partial derivatives of the kinetic 

energy T. (Of anme one rmght use vector analysis to find the velocities leading 
to T or to the generalized forces in these equations, but these vector operations 
are not explicit in the final equations.) 

Prior to the development of Lagrange’s equations, we examined in Section A 
various manifestations of D’Alembert’s principle. In these equations, vector oper- 
ations are much more explicit, although the final equations (as represented by 
Eqs. (20) and (W), for two examples) are scalar equations, In these equations the 
kinetic energy T does not appear, and instead of taking partial derivatives of T 
the analyst is obliged to find inertial acceleration vectors and certain of their dot 
products. 

One of the seemingly apparent advantages of D’Alembert’s principle is in the 
flexibility it offers in the selection of coordinates; there is no restriction to gen- 
eralized coordinates, and in Subsection A 4  we noted that it is possible in this 
context to obtain equations of motion in terms of derivatives of quasi-coordinates, 
even for simple nonholonomic systems. These quantities were defined previously 
as linear combinations of n selected generalized velocities in Eq. (a), but here 
we must broaden the definition to include all v generalized velocities as follows: 

I 
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and in matrix form: 

21 = WTq + w (134b) 

where now u, q, and w are 
the conventions of Appendix A, may be written as 

by 1 matrices, and W is a v by v matrix, which, by 

(134d) 

Recall that n is the number of degrees of freedom for a system defined by Y 

generalized coordinates, and m = v - n is the number of constraint equations of 
the simple (Pfaffian) form 

A 

or 

A ~ + B = O  (135b) 

as originally presented in Eqs. (54) and (55). The scalars W8kr wk, Ash., and B, (and 
hence the matrices W, w, A, and B )  may depend upon 91, e.., 9. and t. 

The objective in the present section is to demonstrate that Lagrange’s equations 
can also be restated in terms of quasi-coordinate derivatives, thereby recapturing 
the equivalence of scope of the two basic methods identified in this report as 
generalizations of D’Alembert’s principle and Lagrange’s equations. To accom- 
plish this objective, we can begin with Eq. (130), and use Eqs. (134) and (135) 
to manipulate the equations of motion so as to remove all time derivatives of the 
generalized coordinates, replacing them with quasi-coordinate derivatives. Special 
cases of the required manipulations can be found in Refs. 39, 44, and 45. 

As in Subsection A-4, the matrix W in Eq. (134b) is assumed to be nonsingular, 
permitting the solution of this equation for q to be written as 

= (WT)-1 (u - tu )  (136) 

Recall that 9 is a v by 1 matrix; it is assumed here that in contrast with the pro- 
cedure in Subsection A-4 the constraint equations (135) have not been employed 
to express the m = v - n generalized velocities in+,, . . ., qv in terms of the selected 
set 91, . ., 9,,. 

Thus if we have the kinetic energy T for Eq. (130) written in terms of the Y 

generalized coordinates in the v by 1 matrix 9, their first time derivatives, and 
time t ,  we can use Eq.1136) to obtain the kinetic energy in terms of u, 9, and t ;  
this expression we call T SO that 

i? 
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I 

A When Eq. (130), or its matrix counterpart Eq. (131), requires T.6 = aT/aG, we 
can write 

Since from Eq. (134b) we have 

Eq. (131) requires 

The term T,9 in Eq. (131) similarly becomes 

With Eq. (la), this term in Eq. (131) becomes 

- 
= T.q + [(4W),9 + ~ 3 ~ 1  F., 

Now we Can rewrite Eq. (131) m the intermediate form 

d - (WT,) - ?;,9 - [(tjW).q + w:q I T.,, = Q -  AT^ a3 

i 
I 

I 
Before Eq. (143) is ready for incorporation into a numerical integration pro- 

gram, the product differentiations must be separated and the explicit 4 then 
removed in favor of u. The first term, for example, can be written as 

[%I 
Since W depends only on q and possibly t, the time derivative of its element W i j  
can be expanded as 

permitting the observation 
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Similarly from Eq. (143) we have the expanded term 

After substitution of Eqs. (144), Eq. (143) takes the form 

- 
- {qTW,,,T,,} - u;:, T,,, = Q - ATA (145) 

Now we can invert Eq. (139) to obtain 

for substitution and elimination of explicit q from the equations of motion.. The 
final result is obtained by combining Eqs. (145) and (146) in the form 

- d -  
W z  (T, , )  + [(uT - wT) W-' W,j.q] T.,, + W.,T,, - tuT,TU 

- { ( U T  - wT) W-lW,qkT,u} - T,q = Q - ATA (147a) 

The burdens of notational conventions are severe at this point, so some reminder 
of the rules of Appendix A seems appropriate. Recall that braces enclose column 
matrices whenever the indexed element appears explicitly; thus the term in braces 
with index k in Eq. (147a) is an explicit expression for the kth element in that 
column matrix. Similarly, square brackets enclose rectangular matrices whenever 
the indexed element appears explicitly; the term in brackets with indices ij in 
Eq. (147) is an explicit expression for the element in the ith row and jth column 
of that rectangular (here square) matrix. 

With some sacrifice of detail, we can symbolize the mathematical structure of 
Eq. (147a) more simply with the alternative representation 

Here the elements of the new matrix y can be calculated (with some labor) from 
Eq. (147a). 

The equations of motion (147) combine with the constraint Eq. (135b) and the 
kinematic equation (134b) to provide a complete set of 2 v  + m scalar first order 
differential equations in the 2 v  + m unknowns 9], ..., 9., ul, e.., uv, and AI, .-.,A,. 
In programming for digital computation we would follow the model established 
by Eq. (133), replacing $' by 4, and filling in the middle set of equations from 
Eq. (147). 

In comparing Lagrange's quasi-coordinate equations with Kane's formulation, 
as represented by the collection in Eqs. (Mb), (55), and (64c), it is important to 
note that Kane utilizes only 2 v  - m first order equations in the 2 v  - m unknowns 
91, ..-, qv, ul,  ..., uv-,,,. This reduction has been accomplished by making explicit 

i 

i 

I 
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use of the constraint equations to eliminate m of the ;I terms from the prob- 
lem, and the labors of this reduction should not go unnoticed. Nonetheless 
it is highly probable that once the alternative sets of equations are formulated 
the computational advantage lies with Kane’s equations. (Of course if constraint 
forces are required as part of the computational output, the advantage might well 
shift to the Lagrangian formulation, because constraint forces follow from the 
Lagrange multipliers through Eq. (129).) 

In the special case of an unconstrained system with n independent generalized 
coordinates and quasi-coordinates, we can abandon Eq. (135b) and remove the 
term ATh from Eq. (147), so that the result compares much more closely to Kane’s 
formulation, as reflected now in Eqs. (66b) and (64c). Meaningful comparison of 
these approaches will have to await comparison of specific cases in later sections 
of this report. As we shall see, Eqs. (147b) and (66b) often give identical results; 
Eqs. (134b) and (64c) are obviously identical. 

A comparison of Lagrange’s quasi-coordinate equations (Eq. (147)), with 
Lagraage’s generabdaoodiaate equations (Eq. ( la ) ) ,  or its matrix counterpart, 
reduces to the obrvation that they are identical for the special choice of quasi- 

coordinates ui g94, Z=f;--,v. This choice implies that u = O  and W = U  in 
Eq. ( lab) ,  resulting in the collapse of Eq. (147a) to the matrix counterpart of 
Eq. (130). Thus the quasicoordinate approach subsumes the generalized coordi- 
nate approach; any problem can be reduced by a quasi-coardinate formulation 
to the same eqwtions resulting from a generalized coordinate formulation, but 
the umverse is not true. 

I ”  

C. 0 EqWtbns 
1. Batnilton’s srprtbrrs for simply constrained systems. In previous sections we 

have nated the desirability of obtaining the difEerential equations that charac- 
terize a system in the form of hst order matrix differential equations. The adop- 
tion of this standard form may facilitate numerical integrations, stability analysis, 
and even analytical solution. Although in some instances the equations of motion 
derived in the preceding sections f is t  emerged as second order differential equa- 
tions, we have noted that it is always a straightfomard task io recast them as 
first order equations (see the transition from Eq. (117) to Eq. (118), for an 
example). In the present section we will consider an alternative equation formu- 
lation procedure that will take us directly to first order equations. 

f 

I 

The starting point for the proposed derivation is the set of scalar equations in 
Eq. (130), or equivalently the matrix Eq. (131), which is Lagrange’s generalized 
coordinate equation for simply constrained systems. Before we depart signifi- 
cantly from this equation, however, we will introduce a minor modification that 
is particularly attractive when the generalized forces in Q fall in the restricted 
class called conseroatiue. (In spacecraft applications it is seldom appropriate to 
consider all generalized forces to be conservative, although usually some forces 
fall in this category.) 

I 
When there exists a scalar V = V(q)  such that 

av 
as 

Q=-- 
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then the force system is said to be conservative, as noted in advance of Eq. (70c). 
More generally, we can separate Q into a conservative part and a nonconservative 
part g, and write 

- av 
?q 

Q z Q - -  (149) 

In substituting Eq. (149) into Eq. (131), it is convenient to introduce the 
Lagrangian 1.’ such that 

Since V,; = 0, Eq. (131) becomes 

d 
- (l’,i) - at = 0 - A’A 

The quantity L,; is by virtue of the structure of T (see Eq. (105)) a linear (but 
not necessarily homogeneous) form in 4; its time derivative provides all of the 
second derivatives of (i that appear in Eq. (151). By introducing a new set of 
variables called generalized momenta defined by 

(15,) 

A and defining the corresponding matrix p = (pi ,  ..., P ” } ~ ,  we can make the sub- 
stitution 

i 

and give Eq. (151) the structure of a first order set of differential equations as 
follows : 

p = + 0 - ATh (154) 

The combination of Eqs. (153), (154), and the constraint equations (135b) is a 
completely viable representation of the system behavior, and it offers certain 
computational advantages over what follows (see Ref. 35). However, with a little 
effort we can improve its analytical structure further. As it stands, we can see 
from Eqs. (105) through (107) that Eq. (153) could be written as 

The relationship between the generalized momenta in p and the variables 
appearing in the matrix u in Eq. (134b) should be noted. Since 1: is a quadratic 
form in 9,  Eq. (155) is a special case of Eq. (134b), and p is a special case of u. It 
is a particularly attractive choice, as evidenced by the structure of the left side of 
Eq. (154). 

We can improve the structure of Eq. (153) without jeopardizing the attractive 
structure of Eq. (154) by replacing the Lagrangian 1: (q,G,t) by a new scalar 

I 
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!l[ = ,A (q ,p, t )  called the Hamiltonian and defined by 

(156a) 

As an alternative expression equivalent to Eq. (156a), we can adopt 

A = L’, - 1 0  (156b) 

where subscripts on 1’ identify the degree of the homogeneous forms in q in the 
expression 

In terms of the potential energy V and the kinetic energy T = T, + TI + To (see 
Eq. (105)), the Hamiltonian becomes 

41 =T, + V - To (1fJw 

Whichever of the expressions (156a, b, or c)  is adopted, one must use the inverse 
of Eq. (155) to remove 4 from 41 before proceeding to construct the equations of 
motion. Then we have A = .4f (g,p,t), and it is this interpretation we now adopt 
for the left side of Eq. (158a). Explicit expressions for Sr(g,p,t) follow from the 
substitution of Eq. (106a) and the inverse of Eq. (155) into Eq. (1%); the result is 

DifFerentiation of Eq. ( M a )  produces 

or 

the final step being justified by the identity 

Equation (157) can be written as 

but the interdependence of the terms in this equation does not yet permit the 
conclusion that the three terms in parentheses are all individually zero. 
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If we consider virtual displacements, however, we need not acknowledge the 
presence of constraints or the passage of time, and we can write 

8<% ( q ,  p ,  t )  = 8 [ p T i  - II ( q , C i ,  t)l 

and its consequence 

2 9[ 2 A' irr 2-r 
aq aP 2s 2q 

pl'i + p T G i  - S q T  2 - 8 ' T  9 -  8 q T -  + S p T - - =  8 

ax = G p T ( j  - 8 q T -  
34 

or 

The independence of the elements in 8qT and 8pT permits the conclusions 

Equation (158) now becomes 

Substituting Eq. (160) into Eq. (154) produces 

Note that symmetry has been retained in the coefficient matrix. 

Equation (156d) permits 91,q and to be written explicitly as 

and 

L Z ? ~  = M - 1  ( p  - r) 

The combination of Eqs. (163) and (161) with the constraint Eqs. (135) is a com- 
plete set of 2v + m first order equations in the 2v + m unknowns q l , .  . a ,  9., 
pl, . * ., p, ,  Al ,  . . ., A,. When written as a single matrix equation, they adopt the form 

I 

(1@w 
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The n X n matrix (M- l ) ,qa  presents a computational obstacle, because for prob- 
lems of high dimension, matrix inversion must be accomplished numerically, and 
numerical inversion cannot precede partial differentiation. 

The identity5 

(M- l ) ,qa  = -M-lM,qoM-'  

stemming from 

permits J Y . ~  to be written for ccimputational purposes as 

2. #amiltar's CkquatiOpI far idpendent generalized coordinates. When all of 
the generalized coo&tes are independent, so the Lagrange multipliers A in 
Eq. (184) are unnecessary and there are no constraint equations, Hamilton's 
equations adopt a much more attractive structure. With the definition 

Eq. (164) can in this case be written 

When 0 = 0, so that all generalized forces in the problem are conservative, 
Eq. (116) adopts the strikingly simple and elegant form identified in scalar form 
as Hamilton's canonical equations; these equations provide the starting point for 
most of the beautiful theory of analytical mechanics. Unfortunately, this special 
case is applicable to only the most preliminary approximations in spacecraft atti- 
tude dynamics, because 0 is required to represent passive damping and active 
control torques, which provide essential features of the attitude behavior of most 
spacecraft. 

Even for o# 0, Eq. (166) seems appealling because the coefficient of i on the 
left side of this equation is unity. The numerical integration process may appear 
to be accelerated quite significantly by the fact that at each integration step one 
can find j ,  from the right side of the equation without the necessity of removing 
a coefficient of i by matrix inversion or Gaussian elimination. It should be noted 
however that Eq. (165c) implies that M-I must be evaluated to obtain A,=; the 
noted advantage over Lagrange's equations (see Eq. (110)) is thereby lost. More- 
over, if the right side of Eq. (166) involves 4 explicitly in Q, then it becomes nec- 

5Suggested to the writer by Prof. A. J. A. Morgan of the University of California, Los Angeles. 

JPL TECHNICAL REPORT 32-1593 55 

! 



essary at each integration step to use Eq. (155) to obtain 4 in terms of p ,  and this 
step also involves the inversion of M .  

It seems that the apparent advantage of applying Hamilton’s canonical equa- 
tion directly6 can be realized only when M can be inverted analytically and some 
function of q,  p ,  and t substituted explicitly for 4. in the Hamiltonian, but then 
the same inversion facilitates integration of Lagrange’s equations. Examples in the 
sections following will make this observation more forcefully. 

As an alternative to the classical derivation culminating in Eq. (163), Hamilton’s 
equations can be derived from Lagrange’s equations in state variable form with 
a simple coordinate transformation. This transformation is illustrated here for the 
special case involving independent generalized coordinates. 

Comparison of Eqs. (110) and (166), with the substitution of Eq. (165b), sug- 
gests that with the transformation 

it must be possible to obtain the bottom half of Eq. (166) from the bottom half of 
Eq. (110). Thus, 

must with this transformation become (with Eq. (165c)) 

This transformation is simpler to establish if instead of Eq. (110) we begin with 
its antecedent form, Eq. (107), which with 4 = u becomes A 

* 1  
2  ti + MU + r = - { U T M , ~ ~ ~ , I L )  + r;u + T ~ . ~  + Q 

Substituting 

u = M-’ ( p  - r) 
and 

! 
L 

a 

G I f  instead of Hamilton’s equations (Eqs. ( 161) and ( 163) ) we elect to use Eqs. ( 154) and 
( 155), then we don’t need 9f (9, p, t )  at all, and need not invert anv matrix literally to obtain 
a complete set of equations of motion. Of course Eqs. (154) and (155) lack the most notable 
computational feature of Hamilton’s canonical equations, which is the absence of a coefficient 
matrix for the highest order derivatives. In Ref. 35 the Eqs. (154) and (155) are said to be 
computationally superior to Lagrange’s second order equations, of which they merely represent 
a first order form. 
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or with Q = 0 - V,q, 

confirming Hamilton’s equations. 

Ill. Application to Nonrigid Spacecraft 
A. Multiie-Rigid=Body System Models 

1. n m y  applications it is both commonplace and reason- 
able estimates ob the attitude motions of a nonrigid spacecraft 
on a rigid body ideallzrrtian. In addition to their direct practical utility, the equa- 
tions of motion of a rfgid body provide a limiting-case comparison for the equa- 
tions of motion for the various idealizations of flexible spacecraft to be considered 
here. For these reasons, we shall deriye and examine equations of motion of an 
externally u~constrained rigid body under a force system equivalent to the force 
F t h u g h  the mass center combined with the torque M. 

of motion will be constructed by means of the fol- 

(1) Newton-Euler equations. 

(2) Lagrange’s form of DAlembert’s principle (Subsection 11-A-2). 

(3) Kane’s quasi-coordinate equations (Subsection 11-A-4). 

(4) Lagrange’s generalized coordinate equations (Subsection 11-B-1). 

(5)  Lagrange’s quasi-coordinate equations (Subsection 11-B-3). 

(6) Hamilton’s equations (Subsection 11-C-2). 

a. Newton-Euler equations. By direct application of Newton’s laws, Euler pro- 
duced the scalar equivalent of 

F = B R  

and 

with dots over vectors denoting time derivatives in an inertial reference frame, 
as the equations of motion of a rigid body. In terms of the vector basis established 

1 
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by inertially fixed unit vectors il, i,, i,, Eq. (167) becomes 

F, = 3 R l  (169a) 

F, = 3 R ,  (169b) 

F, = 3 R ,  (169c) 

where F = Fli, + F,i, + F,i, and R = Elil + R,i, + R,i,. In terms of the vector 
basis established by body-fixed unit vectors b,, b,, b, paralleling principal axes of 
inertia for the mass center, Eq.(168) provides “Euler’s equations” 

where M = Mlbl + M,b, + M3b, and the inertial angular velocity of the body is 
o = o,b, + w,b, + w3b3. Here I,, Z,, I, are the mass-center principal moments of 
inertia of the body. 

To obtain a complete description of the motion of the body, one must augment 
these dynamics equations by a set of kinematics equations relating ol, w,, W, to 
some set of orientation parameters and their time derivatives. Among the many 
options that might be exercised are the nine direction cosines or some subset 
thereof, the four Euler parameters, or a three-angle system such as the Euler 
angles. The question of optimal selection for computations remains controversial, 
and probably depends upon the problem at hand. Here we shall make a particular 
choice of a 1-24 sequence of rotations e,, e,, es about sequentially displaced body 
axes (so that 8, is a rotation of the body about i, from an orientation for which 
ba = i, for a = 1,2,3, 8, is a rotation about the displaced b,, and 0, a rotation 
about the final b,). This is a restrictive choice, which permits the identification of 
these same attitude variables as independent generalized coordinates in subse- 
quent calculations. (Such an interpretation would not be possible if we used the 
four Euler parameters, for example, since they are not independent.) 

In terms of the attitude angles el, e,, e,, the kinematics equations are 

or equivalently 

A A where ea = cos 8, and Sa = sin 9, for a = 2,3, Equation (170d) can be inverted to 
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obtain 

Equation (171) must be considered in conjunction with Eqs. (169) when com- 
parisons are made with alternative formulations. 

b. Lagrange’s fomt of D’AZembert’s principle. For a single rigid body, we can 
set 9 = 1 and 9 = 0 in Eq. (28) to obtain (ignoring Eq. (12)) 

A A A 
With the labeling q ,  = R, (a = 1,2,3) and 94 = 81, 4s = 4, 9ti = 8 3 ,  Eq. (172) 
produces 

(F - *)ob1 = 0 (1734 

(F - e) a, = 0 (173b) 

(F - 36) b, = 0 (173c) 

(m - E)-(blcos e,ms e, - COS e ,S in  e, + b,sine,) = o 

(M - H) (bl sin 0, + b2 cos 8,) = 0 

( 1 7 ~ )  

(173e) 

(M - H) b, = 0 (173f) 

For Eqs. (178) to comprise a complete set, the vector E must be written in terms 
of angles el, e,, 8, and their first and second derivatives (rather than in terms of 
wl, 02, os and their first derivatives). Alternatively, one could accept in Eqs. (173) 
the substitutions 

€I* bl = Zlil- 0203 ( I ,  - ZB) 

H b, = Z2& - 0 3 0 1  ( I ,  - I,) 

(174a) 

(174b) 

H b, = Z,i)rp - olw2 (Il - Z2) (1744 

and then augment Eqs. (173) by Eqs. (170) to obtain a complete formulation of 
the problem. 

c. Kane’s quasi-coordinate equations. In application to the externally uncon- 
strained rigid body, Kane’s quasi-coordinate equations (represented generally by 
Eqs. (66b), (55), and (64~))  are simplified by the choice 

(175a) A .  ul = R,  

(175b) A *  up = R2 
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A 
u4 = = 8, COS 8, COS e, + 8, sin e, 

A 
u5 = w 2  = 6.' COS e:, - 8, COS 8, sin 6., 

A . .  
u6 = wg = 8, + sin e2 

(175d) 

(175e) 

(175f) 

The equations of motion are, for k = 1, . . a ,  6 

f k  + f ;  = 

where (as in Eq. (65)) 

A 
f k =  F * V k  + M*Ok 

and 

The twelve vectors v k  and w k  are available by inspection of 

(176) 

(177a) 

(177b) 

and 

(178a) 

(178b) 

when compared to the defining relationships (Eq. (65)) 

and 

6 

0 = + wt 
k =  1 

Comparison yields 

(179a) 

(179b) 

V1 = i, 

V, = i, 

V, = i, 
v, = 0 
'J ,  = 0 

0, = 0 

0, = 0 

0, = 0 

o, = b, 

w, = b, 
v, = o  0 6  = b, 

Vt = o  wt = 0 (180) 

By using material from Eq. (174) to Eq. (180), one can extract from Eq. (176) the 
equations of motion 

F 1 -  StlR, = 0 (181a) 

F, - 3 R z  = O (181b) 

t 

I 

I 
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Equations (181) and (175d through f )  comprise a complete set, which is obvi- 
ously identical to Eqs. (169) and (170) obtained directly from the Newton-Euler 
vector equations. 

d .  Lagrange's generalized coordinate equations. As noted in Subsection II-B-1, 
Lagrange's equations for independent generalized coordinates (see Eq. (70)) are 
identical in final form to the results of the application of D'Alembert's principle 
(see Eq. (N), or for a single rigid body, Eq. (172)). With this Lagrangian approach 
we are committed to the exclusive use of generalized coordinates 91, -. ., qe so our 
results tkill bot match those obtained by substituting Eq. (174) into Eq. (173), but 
will amrespond ta those obtained by combining Eqs. (170), (174), and (173). Of 
cotuse Lagrange would not have us proceed in this fashion. Instead we should 
calculate 

1 - at . 
- - 2 [e + R; + R?,1 + 3 [Z1w: + z*w; + Zsw;] 

and then construct the partial derivatives 

- a R 3  
aT -- aT 
aR, 

-=  ak, aT -- - mil, 
a i ,  a i ,  

aT 
7 = I, (i, + i1s2) 
a@, 

and the total derivatives 

.. d aT d aT 
[Et air, dt ah, dt aA, 
- -  ( ) =a&, -(-) = 3 l R * ,  "E) = a:, 

(182b) 

f 
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+ i,c2s3c3 ( I ,  - I , )  + .e.3s2z3 + i;s2s3c3 ( I ,  - I , )  

d (Z) = e1c2s3c3 (II - I , )  + ;, (I& + 1,c:) 
dt  ae, . .  . .  + e1ezs3c3~z ( I ,  - I , )  + 2e2e3s3c3 (zl - I , )  . .  + e,elc2 (c: - 8 ; )  (I1 - 1,) .. .. . .  44 (E) = z, (e, + elsz + e,e,c,) 
dt ae, 
A A where ca = COS 0, and Sa = sin e,, a = 1,2,3. 

Lagrange’s equations also require the partial derivatives 

aT 
aR, 0, - = o  aT aT 

aR, =,=o, -= 

(182c) 

Finally, Lagrange’s equations require the generalized coordinates Qk, k = 1;. ., 6, 
as given by 
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Substituting these results into Lagrange’s equations in the form of Eq. (70) 
produces the following equations of motion for the single rigid body: 

F ,  = <%R,, F ,  = %Rz, F3 = XR, 
$1 [Cz ( I lC i  + IZsX) + I3s%] + gzc2S3c3 (11 - 12) + i3sZI3 + ksZS3c3 (12 - 11) 

+ 281e2szc2 ( I ,  - I,cf - I&) + f4,i3C2 [ I ,  + (Il - I , )  (CX - SS)] 

+ ~ & , ~ ~ ~ C Z S R C ~  ( I ,  - Zl)  = M 1 ~ , ~ ,  - Mrczs3 + M+z 

6 , ~ ~ s ~ ~ ~  (Il - 1,) 4- dZ (Il& + I&) + 2&&3c3 (11 - 12) 
.. .. 

+ i 3 i1CZ [ -13 + (11 - 1,) (Ci  - s;)] - $sZcZ [ I ,  - Ilcg - 12883 
= M1~3 + M 2 ~ 3  

zse1s, + Is& + 6*iPC* [I, - (I1 - I*) (c: - si) J 
+ I $ C ~ S ~ C ~  (Il - Z2) + & ~ 3 ~ 3  (I, - 11) = M, (183) 

As noted previously, these equations are precisely what would emerge from the 
substitrrtiom of Eqs. (174) and (170) into Eq. (173), as indicated by D’AImbert’s 
principbe- 

For tional convenience it may’be desirable to rewrite Eq. (la) in first 
order farm, following the general pattern established by Eq. (110). It then becomes 
apparent that the dependence of the d c i e n t  matrix M on time-varying 
quantities presents an obstacle to &cient computation, because this matrix must 
be inverted (or recourse must be taken to a Gaussian elimination) at every step 
of the numenid integration, in order to find $‘ at each time step from the avail- 

d 4 and q. If these equations were to be used extensively and a high 
attached to digital computer time, one could invert M literally 
) in advance of integration. Since only the lower 3 X 3 block of M 
of the main diagonal, this is not a major undertaking for this little 

problem. In general, however, this literal inversion is not feasible for spacecraft 
simulation problems. 

e. Lagrange’s quasi-coordinate equations. The Lagrangian quasi-coordinate 
equations are presented in their most general form as Eq. (147). For the holo- 
nomic system under consideration, the term A involving the Lagrange multipliers 
is absent. By choosing the quasi-coordinate derivatives as in Eq. (175), and limit- 
ing application to a single rigid body, we can greatly reduce the complexity of the 
equations of motion. By comparing Eqs. (175) and (134), we find that 

10 = 0 

and 

’1 0 0 0  0 0 

A A 
where Sa = sin 8, and Co = cos 8, for a = 1,2 ,3 .  Thus in Eq. (147), we have 
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W , t  = 0. These considerations alone reduce Eq. (147a) to the simpler form 

F t l  = { .%U13U, a u 3  z1u4 z2u5 ZRUe}= 

= [?:-I--:] { u }  (186) 

where U is the unit matrix and I is the diagonal matrix of principal moments of 
inertia for the mass center. The matrix equation of motion can then be repre- 
sented as 

- d -  
- at T,,' + W-' [~~W- lWi j .q ]  T,,, - W-' {U~W-'W,, ,~T, , , }  = W-'Q (187a) 

or (see Eq. (147b)) as 

With Eq. (186), the first term in Eq. (187) is trivial to record. The term on the 
right of Eq. (187) is also simple, since for the given choice of quasi-coordinate 
derivatives the generalized forces in Q may be written as 

so that 

3 A 
with F = { F 1 F 2 F 3 } P  and hl = ( M 1 M 2 M 3 } = .  Equation (134d) now combines with 
Eq. (188) to permit the interpretation 

Equation (182a) provides 

F.,, is eliminated for this application, and TI, is provided: 
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There remains for disposition in Eq. (187) the term 

( 190) 
- 

W-'yT,, = W-1 [ U ~ W - ~ W ; ~ , ~ ]  ?;.u - W-' { u ~ W - ' W . ~ , ~ , }  

For the special case of W implied by Eq. (184), explicit inversion is not difficult, 
and we can find 

O l  0 
0 0  0 0  

0 0  

The basic ingredients of the six by six matrix y in Eq. (190) are the six 6 X 6 
matrices W,,* and the thirty-six 6 X 1 matrices Wij, , .  The first set of six matrices 
can be obtained explicitly from Eq. (184) after transposition and partial differen- 
tiation as follows: 

W, is the nall matrix for k = 1,2,3,4. 

W,q, = W,,, is null except for the three elements 
A 

[W.qs144 = -S&s 

[W,qs14Ll = S&i 

[W.qs14B = cz 

W,q,, = W,,* is null except for the four elements 

[W.q614r = -C#S, 

[W,q,I4, = -w, 
[W.qsIl&4 = c3 

[W,q,Iss = -s:+ 

The second set of 36 column matrices Wij.p is available by transposition of WT 
in Eq. (183) and partial differentiation of its elements with respect to 9. The results 
are all columns of zeros except for {W,,,}, {Wsr.,}, {W,s,q}, {Wss.q},  and {W46,q}, 
which are null except for the following nonzero elements: 

As indicated by Eq. (NO), the construction of requires the matrix product 
(from Eqs. (175) and (192)): 
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Equation (190) can now be used to construct the following expression for the rth 
row y ( ' )  of the matrix y as follows: 

or 

or 

I 

0 
0 
0 (196b) 

and similarly for T = s, except that W,q,  # 0, so that 

( W s j . q  - W ) y ( 5 )  1 UTW-1 
.qs 

= uTW-1 [ O  : 0 : 0 : w,,,, : wss,, : 01 - uTW-'W,*, 

0 ) r  

0 
0 I 

I 

The sixth row of y is more easily found to be given by 

01 y ( 6 )  = uTW- ( We.j,q - w,qfi) = -UTW-'W& = (0  0 0 - us u4 

(196d) 

JPL TECHNICAL REPORT 32-1593 



Thus the 6 X 6 matrix y can be written in terms of 3 X 3 partitions as 

The equations of motion (see Eq. (187b)) require the matrix product W-'y, 
which from Eqs. (191) and (197) acquires the remarkably simple form (written in 
terms of 3 X 3 partitions) 

where, as in item 14 of Appendix A, noting Eq. (175), 

It M y  becomes apparent upon substituting Eqs. (198), (la), and (186) into 
Eq. (187b) that the quasicoardinate equations of motion are really very simple, 
since they reduce to 

By the definitions of the elements of {u} in Eq. (175), this result is precisely the 
same as tbat obtained trivially by recording Newton's second law and Euler's 
equations (see Eq. (169)). The same results were also obtained in Eq. (181), using 
Kane's quasi-coordinate formulation. 

f .  Hamilton's equations. The sixth and final equation formulation procedure 
to be applied here to the single rigid body is that due to Hamilton, as represented 
in matrix form by Eq. (166). 

Hamilton's equations involve as unknowns the generalized coordinates previ- 
ously employed in Lagrange's equations, and the generalized momenta in the 
matrix p defined in Eq. (153). In this application the potential energy V is taken 
as zero, so that all of the external forces and torques are represented by the 
generalized forces in the matrix Q, which then replaces 0 in Eq. (166). Since the 
Lagrangian is here identical to the kinetic energy, the generalized momentum 
matrix in Eq. (153) becomes 

(Actually this is an expression of completely general validity, since V,; = 0). 

I 

I 
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As indicated by Eq. (105), T is a second degree form in the generalized 
velocities, S O  that p is a linear form in 4, and Eq. (201) can be written as 

= nii + r (201b) 

for a square symmetric matrix M and a column matrix r defined by Eqs. (106) and 
(107). (Comparison with Eq. (134) indicates that p qualifies as a quasi-coordinate 
derivative matrix, but p has special properties that stem from the definition in 
Eq. (201a).) 

Physical considerations guarantee that Eq. (201b) can be inverted to obtain 

The application of Hamilton’s equations to the rigid body involves the following 

(1) Construct T = T (q,( i ,  t )  from basic definitions. 

( 2 )  Construct p from Eq. (201a), and thereby identify M .  

(3) Find M - l ,  and record Eq. (202). 

(4) Use Eq. (202) to obtain 

steps : 

T (% 4, t )  = T (% P ,  t )  (203) 

(5) Construct the Hamiltonian from its definition in Eq. (156), which here 
reduces to 

Note that ‘9/ = ,%(q, p ,  t )  must be obtained before proceeding. 

(6) Find the partial derivatives ,q,<, and cq,Tj that comprise <%., in Eq. (166). 

(7) Find 6 (here identical to Q) from Eq. (188) as 

where u = { ( i l  (i2 G:, o1 w Z  w ~ } ~ .  By substituting for q 
from Eq. (202) into Eq. (205) one can obtain Q = Q (4, p ,  t ) ,  and incorpo- 
rate the result into Eq. (166). 

Our proposed application to the single rigid body is simplified by the fact that 
in constructing Lagrange’s equations we have already found T and Q in terms of 
6, 9, and t (see Eqs. (182a) and (182e)). Thus we can easily find from Eqs. (201a) 
and (182b) the scalar generalized momenta 

aT 
p4 = g- = e’, [ I &  + c: ( I &  + Z2S3z)] + i, (II - 1 2 )  C&C3 + iRZRS2 

1 

I! 
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aT 
p.5 = g = e', (11 - 1 2 )  CZS&{ + e, (114 + I&) 

(206) 
aT 

p,j = = B I Z R S Z  + i ,Z ,  

Thus in Eq. (201b) the matrix r is zero and M is given in terms of 3 X 3 parti- 
tions by 

M =  

The next step called for in the outline is the construction of M-l ,  as required 
for the construction of T (9, p, t )  and 41. This promises to be a tedious chore even 
for this simple example, and it would be a major undertaking for a spacecraft 
model of my c o ~ p l e ~ i t y . ~  This matrix inversion should be accomplished literally 
(not numericalIy) w$enever popible, since it is used in the construction of A, 
which must be s u b j d  to partial Werentiation with respect to q, which appears 
in M. The only alternative for digital computation is the use of the identity 

as noted previously. 

For tbe special case of the rigid body, we can circumvent the problems of 
inverting M and constructing 41, and pursue a somewhat easier path that makes 
intermediate use of the angular velocity components ul, w2, w3. Rather than use 
Eq. (1115) to obtain 41, we can return to the representation found in Eq. (156c), 
noting that in this case V = 0 and T = T, (so To = 0). Therefore ,41 is identical 
to T, and we can skip the step indicated by Eq. (204). 

Moreover, rather than apply Eq. (203) to find T(q,  p, t) from T (q,  4, t) by sub- 
stituting Eq. (202) for 4, we can proceed directly to T (q ,  p, t) from kinetic energy 
in the form 

(208) 
1 

2 2 
T = -  ,'% (lk + R; + k)  + - (Z& + ZZ"; + Z d )  

The simplicity of the expressions for p,, p, ,  and p:, in Eq. (206) permits the 
representation 

(2o9) 
1 1 

2 3  2 T = - ( p ;  + p :  + p i )  + - ( Z I W i  + Z d  + I , d )  

so that we require expressions for W1, w2, and w:, in terms of q and p if we are to 
obtain T ( q ,  p, t). Comparison of Eqs. (206) and (170) leads to the relationships 

p4 = ZlC~C3"l - 1?C?S,O2 + Z 3 S 2 W R  (210a) 

'Note again that the same matrix M emerges as a coefficient of the most highly differentiated 
terms in Lagrange's equations. See Eq. ( 110) and Eq. ( 183). 

I 

I 
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(210b) 

(210c) 

or equivalently" I{:::':/ (21od) ( E t = [  ; 0 1 I3W3 

czc3 -c2s3 
c3 

This relationship is somewhat more easily inverted than is M in Eq. (207); the 
result shows 

Substitution into Eq. (209) now produces 

- 1  1 
T = -(P: + P; + PX) + m ( P r C 3  4 + p5c2s:i - peszc,)? 2 3  

Partial differentiation now yields 

I 

i' 

t 

8Note that the coefficient matrix in Eq. (210d) is contained in W as defined by Eq. ( 184). This 
relationship can be displayed even more dramatically by absorbing Eq. (210d) in the more 
comprehensive statement 

p = W M ' u  (210e) 

where the elements of u are defined by Eq. (175) and M' is defined in terms of 3 X 3 parti- 
tions as 

B 

M t  [I-m- I o  --] 
0 1 1  

with u the unit matrix and I the diagonal matrix of principal moments of inertia. The combination 
of Eqs. (210e) and ( 133b) then provides 

p = W M ' W T 4  (21of) 

which when compared to Eq. ( 201b) yields the interesting relationship 

M = W M ' W T  (210g) 

t a 
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The equations of motion are finally available by substituting Eq. (213) for the 
elements of 41, in Eq. (166), and substituting Eq. (182e) for the elements of 0 
in that equrrtlon. "he d t  may be written as the following system of scalar 
equatioii: 

41 = PI/,% ( 2 W  

cir = pJ'% (214b) 

+z = Q2 = F ,  (214h) 

i 

I 
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It should be noted that in this example the external forces and torques have 
remained abstract, as symbolized by Fa and M a  for a = 1,2,3. Before proceeding 
with Eqs. (214) as Hamilton’s equations, one would be expected to write Fa and 
M ,  in terms of q, p ,  and t (eliminating any 4 terms). This task generally requires 
yet another application of Eq. (202). 

g. Summary for the single rigid body. On the preceding pages six procedures 
have been applied to obtain thc equations of motion of a single rigid body: the 
Newton-Euler equations, Lagrange’s form of D’Alembert’s principle, Kane’s quasi- 
coordinate equations, Lagrange’s generalized coordinate equations, Lagrange’s 
quasi-coordinate equations, and Hamilton’s equations. 

The most obvious result is the fact that only three distinct sets of equations 
emerged from the six methods. The quasi-coordinate procedures of Kane and 
Lagrange both reduced to the Newton-Euler equations, as presented in Eqs. (169) 
and (171). Kane’s quasi-coordinate approach is much simpler to apply to this 
problem than is that of Lagrange. 

Lagrange’s form of D’ Alembert’s principle and Lagrange’s generalized coordi- 
nate equations gave the same results as represented by Eq. (183). These equations 
are both more difficult to obtain and more difficult to solve (literally or numeri- 
cally) than are the Newton-Euler equations. The digital computer computational 
efficiency of Lagrange’s equations could be improved in this simple case by a 
literal inversion of the matrix M shown in Eq. (207). 

Hamilton’s equations required the most labor to assemble, and required a literal 
matrix inversion that would be difficult to accomplish for a more complex example. 
However, the result, as represented by Eqs. (214), has a structure that is more 
attractive for numerical integration than is that of Lagrange’s equations, which 
have time-varying coefficients of the derivatives of highest order in the system. 
Hamilton’s equations are much more heavily laden with trigonometric functions 
than are the Newton-Euler equations, however (compare Eq. (214) to the set 
consisting of Eqs. (169) and (171)). 

For this basic example, the Newton-Euler approach is generally” the best of 
the six methods considered, by both of the primary criteria: (1) efficiency of 
numerical integration, and (2) ease of formulation. In addition, this approach 
provides equations that are more readily solved literally in certain special cases, 
such as for M = 0, and most analysts would argue that it offers an advantage in 
permitting easier physical interpretation of results, particularly when compared 
with Hamilton’s equations. 

One must of course be very cautious about generalizing too quickly from a 
single rigid body to an arbitrary nonrigid spacecraft. 

2. Rigid body with simple nonholonomic constraints. For systems with holo- 
nomic constraints (see Eq. (9)), as for systems with simple nonholonomic con- 
straints, one can record constraint equations in the form A 4  + B = 0 (see Eq. (55)) .  

“External force F and moment M are unspecified in this example, and the body is of arbitrary 
shape. For the special case of the axisymmetric frictionless top, simplifications in Lagrange’s 
equations and Hamilton’s equations are more dramatic than those occuring in the Newton- 
Euler equations, and the advantage shifts from vectorial mechanics to analytical mechanics. 
In Ref. 38, Euler’s equations of motion for the top appear as Eq. (9.34), and Lagrange’s 
simpler equations appear as Eq. ( 9.46). 

i 

I 
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In spacecraft simulation, one frequently encounters holonomic constraints (such 
as those relating the four Euler parameters or the nine direction cosines). Non- 
holonomic constraints, when encountered, are very often in the form of inequali- 
ties (such as “stops” on gimbals), and then none of the methods of analytical 
mechanics is directly applicable (and even a Newton-Euler formulation is awk- 
ward). Systems with simple nonholonomic constraints are rather rare in spacecraft 
attitude simulation work, although they can of course arise in principle, and we 
should be prepared to deal with them. 

In what follows we will examine the classical nonholonomic problem of the 
homogeneous sphere rolling without slip on a rough surface. We can apply to this 
problem any of the following methods: 

(1) Newton-Euler equations. 

(2) Lagrange’s form of DAlembert’s principle for simply constrained systems 
(Subsection 11-A-3). 

(3) Kane’s quasi-coordinate formulation (Subsection 11-Ad). 

(4) Lagrange’s eqmticms for simply constrained systems (Subsection 11-B-2). 

(5) Lagrmge’s quasEcoordinate equations (Subsection 11-BS). 

(6) Hamilton’s equations for simply constrained systems (Subsection 11-C-2). 

Each of these approaches &cept the sec0nd-wiI.l be applied here in detail to the 
rolling sphere problem; the second method is ignored here because it is a special 
case of the third, and offers no advantages. 

ta. Constmfnt equcctions. Common to all methods is the requirement that the 
spJwre rolls without slip on the horizontal plane; thus the point p of the sphere 
instantaneously in contact with the floor has no velocity relative to the floor, which 
is assumed to establish an inertial reference frame. (See Fig. 5.) We can incorpo- 
rate this constraint in the mathematical statement that the velocity of the center 
c of the sphere is given by 

R = o X ai, (215) 

Fig. 5. Sphere rolling without slip 

JPL TECHNICAL REPORT 32-1593 73 



where R is the position vector of c relative to an inertially fixed point 0 , a  is the 
inertial angular velocity of s, u is the radius of s, and i, is an inertially fixed unit 
vector pointing vertically upward, 

For all of the formulations to follow, we adopt the set of generalized coordinates 
q,;",qR such that 

R = qli, + q2i, + q3i, (216a) 

and, by the definitions illustrated in Fig. 6 for the angles q4, q,, qe, 

s., '3 

Fig. 6. Attitude angles for the rolling sphere! 

In terms of scalars wl, wz, w3 defined by 

Eq. (216b) becomes 

o1 = q5 cos q4 + G e  sin q4 sin q. 

oz = ;ls sin q4 - (iB cos 9. sin 4s 

0 3  = q 4  4- qfi cos qe 

(216b) 

(217) 

(218a) 

and in 3 X 3 partitioned matrix terms these kinematical relationships may be ex- 
pressed as 

[O I P ] c j  = o  (218b) 

where 

s4 - C d 5  (218c) 
c5 1 0 c4 

1 0 

A A 
with so = sin qa and ca = cos 9. for u = 4,5. 

t 

w 

I I 
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Substitution of Eq. (216) into Eq. (215) provides the scalar constraint equations 

;II - a (G5 sin q4 - Q6 cos q4 sin q5)  = 0 

(iz + a (is c o s  q4 + ;Is sin q4 sin q 5 )  = o 
= 0 (219a) 

or the matrix equation 

A4 = 0 

where in terms of 3 X 3 partitions 

and 

0 -as4 ac4s5 

0 0 0 
A’-[ 0 ac, m4s5 ] 

(219b) 

(219c) 

b. NeWon-Euler equutbw. Direct application of F = “3& and M = H for the 
sphere leads immediately to 

Fi = “%{i 
F, = ,%q2 
F, = 

Mi = Z& 

MI = Z& 

M, = l&, 

where 2% is the mass of the sphere, I ,  = % 3ta2 and the scalar components of force 
F and moment M about c am defined by 

F = F,i, + F,i2 + F,i, (22la) 

and 

M = M,i, + M2i, + M,i, (221b) 

Because the idealized rough surface applies a contact force to the sphere at 
point p only, and there is no other force applied except that due to gravity, we 
can substitute into Eq. (220) the relationship 

or the matrix equation 
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where 

(222c) 

Equations (218) through (220) then constitute a complete set of equations for the 
system. 

TO facilitate comparison with other formulations, we can record a single matrix 
equation that embodies all of the system equations. With the definitions 

A 
u1 = 4 1 ,  

A .  
u2 = q 2 ,  

A .  
us = q:i 

this equation may be written as follows: 

u l o l o l o l  0 C-I-l-l-- 
0 
- 

0 
- 

0 

P O  

-I- 
-I- 

o ‘%tu 

0 0  

0 I-!-‘+ u l A ’ l o I o I  -- 

, 

c 
L 

c. Lagrange’s form of D’Alembert’s principle. Lagrange’s form of D’Alembert’s 
principle has been presented here (in Subsection 11-A) as a special case of Kane’s 
method, and only the latter has been developed here into a form readily applica- 
ble to rigid bodies. Thus we consider for this example only the more general 
method. 

d.  &ne’s quasi-coordinate equations. Equations (55), (64c), and (66b) comprise 
the system equations proposed by Kane, as developed in Subsection 11-A-4. Recall 
that the first step in this procedure is to use the constraint equations (Eqs. (219)) 
to solve for the m redundaiit generalized velocities in terms of the remaining n 
generalized velocities and the full set of v = n + m generalized coordinates. For 
this example, m = I) = 3, and Eq. (219) is most easily solved for Ql, Qz, and Q.? in 
terms of the remaining variables, to obtain 

4 3  = 0 (22W 
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The next step-for the single rigid body is the substitution of Eqs. (225) into 
expressions for R and o, using Eqs. (216). At  this point in the formulation Kane 
departs from the pattern established by Lagrange, aqd selects a set  of n quasi- 
coordinate derivatives ul, u,, and u3 in terms of which R and o are easily recorded. 
For the rolling sphere example the obvious choice is (from Eq. (218a)) 

u2 = A o2 = (j5sinq4 - qti cos q4 sinq5 (226b) 

A 
us = w3 = q, + ;lo cos qs 

This selection permits k and o to be written as simply 

and 

R = au,il - au,i, 

o = ulil + uJ, + usis 

b e ’ s  equations of motion are simply (from Eq. (Ma)) 

where (from Eqs. (65c) and (65d)) for this problem 

A 
fk = P*Vk +MOW,, k =  1,2,3 

A 6 = - . a . V k  -E*%, k = 1,2,3 

with Vk and O, available from Eqs. (e, S f ,  227a, and 227b) as 

VI = - ail, V, = ail, V, = 0 

o, = i,, o2 = i,, 0, = is 

Thus we have (with the help of Eqs. (222a) and (227)) 

f l  = -aF, + M ,  = 0 

f Z  = aF, + M ,  = 0 

f s  = 0 
f :  = , Y a R ,  - Z$, = - .Ytlazti, - Z8h1 = - ( 3 a 2  + I , )  t i ,  
f t  = - “UaR, - Z& = - .Wa*u, - Z& = - ( 3 a 2  + I , )  ti, 

.. 
.. 

* -  f ,  - - ZA:, = - zxfi:, 

The multiplier c?ia2 + Z, is nonzero, so the equations of motion reduce trivi- 
ally to 

l i 1 = 0  

li, = o  
ti3 = o  
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This simple result is not surprising, although it is seldom realized in the bowling 
alley. The same implication is available from the Newton-Euler equations appear- 
ing in Eq. (224), after a little manipulation. To compare the results of Kane's 
approach to the Newton-Euler formulation, we can assemble Eqs. (225), (226), 
and (231) as a single matrix equation equivalent to Eq. (224), as follows: 

U 

0 
- 

0 

A ' I O  

- I -  
- I -  

P O  

O I U .  

(232) 

e. Lagrange's generalized coordinate equations. As shown in Subsection II-B-8, 
Eq. (130), Lagrange's generalized coordinate equations for systems with simple 
constraints appear as 

(233a) 

These dynamical equations must be combined with the constraint equations 

to obtain a complete set. 

For the rolling sphere example, Y = 6 and rn = 3. The constraint equations are 
given by Eq. (219), and the generalized forces Q k  are zero for k = 1;-.,6. The 
kinetic energy of the rigid sphere is given by 

where I ,  = % 3 a 2  and wlr  wp,  w y  are defined by Eq. (217). Kinetic energy can be 
expressed in terms of generalized coordinates and generalized velocities by sub- 
stituting Eqs. (218a) and (216a) into Eq. (234); the straightforward result is 

1 1 - c% (4: + 4; -I- 4;) + - I ,  [((is cos q, + &sin q4 sin qJ2 2 2 

+ sin q4 - 4,; cos q4 sin qs)2 + (;I4 + ;I6 cos 45)'1 

T =  

(2354 

Before plunging into Eq. (233a) with T in this form, it behooves us to recognize 
that T can be manipulated and simplified by trigonometric identities into the form 

i 

t 

H 
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By substituting from Eqs. (235b) and (219) into Eq. (ma), we can generate the 
following equations of motion: 

d 
I ,  (G6 + 9, cos 9&) = -Ala cos 9, sin 9s - Aza sin q, sin 9. (236f) 

Equations (236) and (219) comprise a complete set. For comparison with the 
equivalent Eqs. (224) and (232), it is convenient to introduce the variables u1; - *, % 
dehed by 

(297) 
A 

uj = 4,, j = 1,-. . ,6 

and then to write Eqs. (236) and (219) as a single first order matrix differential 
equation. After expanding the derivatives in Eqs. (M) and (m) and substitut- 
ing the pew variables, we find the following system equation: 

I 
I 

I 
I I  
1-7 
I I  
I-- I 

‘ 0  
I - _ ,  
U 

0 

I 

I-- 
i 
I -- 

1-- 

l o  

l o  

0 

I 

I -- 
I 
I-- 

I-- 

l o  

I U  

0 

0 , 0 , 0 , Z’ IA’= 

-- I --I-- I-- 1 
U I A ’ I O  l o  I o  

where 

1 0 cos95 

1 0 

L cos95 0 4 
f .  Lagrange’s quasi-coordinate equations. Equations of motion for the roll- 

ing sphere could also be written from Eq. (147a), using the Lagrangian quasi- 
coordinate formulation. The results will of course depend on the definitions 

i 

c 
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adopted for the elements of u. As noted in Subsection 11-B-3 in general terms, the 
choice indicated by Eq. (237) produces the result just obtained as Eq. (238), and 
offers no advantage over the generalized coordinate method of Lagrange. The 
alternative natural choice is that displayed in Eq. (223); this offers the advantage 
of producing T from Eq. (234) in the simple form 

(239) 
- 1  1 
T = -  ,‘M (UT + U: + u;j + - I ,  (u: + U: + u;) 2 2 

With this choice for u, we have w = 0 and 

with P as given by Eq. (218c). 

With the restrictions applicable to the rolling sphere problem with u defined 
by Eq. (223), Eq. (148) reduces to 

The basic new ingredients of this equation are given by 

(243) 

I 
W& = [ - 1 1 - i,k ] , where for k = 1,2,3, and 6 PTq, = 0 

(24.44 

and 

! 

FI 
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Wijsq = 0, for i = 1,2,3,4 and f o r i  = 1,2,3 

and 

w,,,, = {O 0 0 - s 4  0 0lT 

The matrix product UW-', appearing twice in Eq. (241), is given by 

The 6 X 6 matrix [u't;V-'W,,,,] is null except for the following entries: 

uTW-'Wsr,P = (sicst44 - s,c,c,u, - s4s5u,)/s, 

u'W-'Wsa,, = ( -s*c4csu4 + c:c5u5 + c4s,u,)/ss 

UTW-'WR4& = -s&Ic& + c:csus + CaSnU,; + S*C&UI + s:cnu5 = CnUs + C$5U,i 

(2474 

(247b) 

(2474 

uTw-'w,6,q = -C$5U.& - S4SnU5 (247e) 

The symbol combination u"W-'Wclk in Eq. (241) describes the kth row of a 
6 X 6 matrix. Examination of Eq. (244) reveals that these rows are filled with 
zeros for k = 1,2,3, and 6, while the combination of Eqs. (244) and (246) provides 

UTW-1W,q4 = (0 0 0 ( - S A U 4  - s:u5 + SIC4UI - c:u,) 

(c:u4 + s4c4us + s:u4 - s4c4u5) 0) 
= (0 0 0 -us u* O }  (2484 
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and 

a2 

Finally the four terms in Eq. (241) can be considered as individual column 
matrices to be added together. The first term is obtained from Eqs. (240) and 
(242) as 

The second term in Eq. (241) is, from Eqs. (242) and (247), 

. 
1 

(249b) 

The third term in Eq. (241) is, from Eqs. (242) and (248), 

t 

(2494 

The fourth and final term in Eq. (241) is available from Eq. (219) as 

w 

Finally we can see that when Eqs. (249) are combined as required by Eq. (241) 
there emerge the simple scalar equations that follow: 1 
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1, (a4 cos q4 + G, sin q 4 )  - Ala sin 9* + A d z  cos q, = 0 (250e) 

I ,  (6, sin 94 sin q5 - 6, cos q4 sin qs + Zi, cos q5) 

(25of) -k Ala COS q4 sin qs  + &a sin 94 sin q5 = 0 

Equations (250) must be combined with the constraint equations (219) and the 
definitions in Eq. (223) before the set is complete. When the result is cast as a 
single martix equation for comparison with Eqs. (224), (232), and (B), we have 

whme 

0 l 1  
For future reference, it may be noted that if we had chosen for this example to 

write our equation of motion in the compressed form established by Eq. (147b), 
we would have 

d -  2 (T.,) 4- W-'yTT, + W-IATA = 0 

If we had then explicitly written out the coefficient of ?.u, using Eqs. (W), and 
(246) through (248), we would have found 

This result differs by a sign from the expression recorded in Eq. (198), and serves 
as a reminder of the limitations of that equation. The symbols w1, 02, os in the 
example leading to Eq. (198) are scalar components of the inertial angular velocity 
of the body for a body-fied vector basis, while in the present example an 
inertially-fixed vector basis is used (see Eq. (217)). The latter choice is .reasonable 
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only for a sphere, since any other body would have time-varying inertia properties 
for the inertially fixed vector basis. For the sphere, as we have seen, the term 
W - X ~ T . ,  is simply zero. 

g. Hamilton’s equations. In applying Hamilton’s equations in the form of 
Eq. (164) to the rolling sphere, it is immediately apparent that the resulting system 
equations will have the same basic dimemion and structure as Eqs. (238) and 
(251), with generalized momenta replacing the quasi-coordinate derivatives (of 
which they are a special case). The 6 X 6 matrix in the upper left corner of the 
coefficient matrix in Eq. (251) would be replaced by the matrix for this system 
defined as A l  in Eq. (201b), and the matrices ,71U and I” in Eq. (251) would both 
become simply U .  The third and fourth partitions on the right side of Eq. (251) 
would become respectively .9i,,, and .U.,. The partition equations would be re- 
arranged to establish the symmetry of Eq. (164). 

To obtain and .!A,,, explicitly it is necessary to invert hl literally. This is not 
an extraordinary task, because the 6 X 6 matrix M is diagonal except for the 3 X 3 
partition in the lower right hand corner, appearing in detail as 

(253a) 

Inversion provides 

so that from Eq. (202) we have 

t 

For this problem the Hamiltonian 41 is simply the kinetic energy T ,  so 
Eqs. (235) and (254) can be combined to yield (after some manipulation) 
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The partial derivatives A,q and A,p can be obtained from Eq. (255). The 
column matrix c%,q is null except for the element in the fifth row, which can be 
shown to be 

A,,, = [P4P6 (1 + c:) - c5 (P: + P31/(Z&) (256) 

Partial differentiation of Eq. (255) also provides 

Thus the system equations stemming from a Hamiltonian formulation may be 
arranged as follows, in conformity with the symmetric pattern indicated by 
Eq. (184): 

r 

L 

I-- 

\ 0 I 

h. S u m m y  for the rolling sphere. Equations (224), (232), (238), (251), and (258) 
all provide complete system equations for the sphere rolling without slip on a 
horizontal surface, but these matrix equations differ in dimension and in amena- 
bility to literal solution and numerical integration. 

The number of first order scalar differential equations is fifteen in every case 
but one; Kane's quasi-coordinate formulation produces only nine such equations 
in Eq. (232). Moreover, three of these equations (the dynamics equations) are 
trivially satisfied by constants, and ,the right side of the remaining equations con- 
sists only of these constants. Equation (232) is not only the smallest in dimension, 
but also the only set that yields an obvious partial solution in closed form. 
Complete solution would require a numerical integration of only six first order 
equations. 

Although five formulations have been presented, only three distinct sets of 
kinematic variables 'and two sets of kinetic variables (constraint forces and 

t 

B 
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equivalent Lagrange multipliers) have been employed. Only the choice of kine- 
matic variables is important here. In Eqs. (224), (232), and (251) the kinematic 
variables included angular velocity scalar components as well as the generalized 
coordinates illustrated in Figs. 5 and 6. For the Lagrangian formulation leading to 
Eq. (251) we were obliged to work with generalized coordinates and generalized 
velocities, while for the Hamiltonian formulation we had generalized coordinates 
and generalized momenta to deal with. The simplicity of Eq. (232) suggests that its 
kinematic unknowns are best suited to this problem. Since Eqs. (224) and (251) 
employ the same variables as Eq. (232), perhaps with sufficient manipulation they 
too would yield partial explicit literal solutions. This seems less likely for either 
the Lagrangian or the Hamiltonian formulation. 

If we ignore the possibility of closed-form literal solution, and consider the 
relative merits of Eqs. (224), (232), (238), (251), and (258) as the subject of a 
digital computer numerical integration, then our standards of judgment change. 
Equation (232), based on Kane’s method, is still much favored because its dimen- 
sions are small. Of the remaining options, the most attractive set is Eq. (258), based 
on Hamilton’s equations. The left side coefficient matrix in Eq. (258) has the 
unique advantage of symmetry, and contains only one time-varying 3 X 3 partition 
(appearing with its transpose). Equation (224), from the Newton-Euler formula- 
tion, has two distinct time-varying partitions in its coefficient matrix, as does 
the Lagrangian set in Eq. (238). The Lagrangian quasi-coordinate equations 
(Eq. (El)) have a simpler right side than the generalized coordinate equations, 
but only at the expense of complicating the more important left side with four 
time-varying coefficient matrix partitions, three of which are distinct. 

Before we accept too sweepingly the implied ranking of these results in order 
of diminishing merit (Eqs. 232, 258, 224,238, and finally 251), we should pause to 
examine the labors of derivation and the difficulties of extension to systems of 
higher dimension. It is significant that the two methods yielding the best results 
both involve a matrix inversion that must be performed literally (nonnumerically) 
even for problems of higher dimension. For this problem the “matrix inversion” 
involved in Kane’s method was trivial; in effect we inverted a unit matrix in record- 
ing Eq. (225) from Eq. (219). Indeed the method is sufficiently flexible to permit 
the analyst to choose his preferred variables so as to minimize the labors of inver- 
sion. But with the Hamiltonian formulation all flexibility for the analyst is sacri- 
ficed; he must either literally invert the matrix M defined in Eq. (201b), so he can 
obtain literal expressions for the partial derivatives in .q,,, and .U,,,, or he must 
accept the computational burdens of the identity 

3. Symmetric three-body system with small deformations, Figure 7 portrays a 
system of three point-connected rigid bodies with linearly elastic hinges that gen- 
erate interbody torques when the system departs from the nominal configuration 
represented by dashed lines. There are no external forces or torques applied. 
Attention is focused on the free vibration problem, for which the deformation 
angles yl and yz and their time derivatives remain “small,” while the central body 
experiences arbitrary rotations in inertial space. The term “small” formally means 
arbitrarily m l l ;  only linear terms in the kinematic variables of deformation are 
retained in the final equations of motion. 

t 

t 

ii 
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Fig. 7. Symmetric three-body system 

Although virtually all of the methods discussed in this report could be applied 
to this system, we can draw upon our experience with previous examples to antici- 
pate that several methods will give the same results, and that other methods will 
demand unreasonable labors of derivation in return for system equations of rela- 
tively mter complexity. Accordingly, equations of motion are derived here in 
detail only fag b e ' s  method and for the Lagrangian quasi-coordinate method; 
the Newtm-Bder equations are d e d  from another reference, and the ad- 
vantap rad dhpdvantages of the Lagrangian generalized coordinate approach 
and Fhmibn's formulation are discussed without generating a complete set of 
equathm4. 

a. Newton-Euler equcrtiont. In Appendix C of Ref. 31 the three-body exam& 
appearing in Fig. 7 is used to illustrate an algorithm for digital computer formula- 
tion of equations of motion of n + 1 rigid bodies that are interconnected by n 
line hinges, and hence in a topological tree configuration. Eq. (1) of Ref. 31 is an 
-pl?==- tian of the unrestricted equations of motion of such a system; 
partfal linearization of this generic equation produces for this three-body example 
the Whving equations of mation: 
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Here Zl,Zz,  Z, are the principal moments of inertia of the three-body system in its 
nominal configuration (with 7 ,  = y2 = O ) ,  referred to the system mass center. The 
inertial angular velocity o of the central body 6, defines the scalars w i  = o bq 
( j  = 1,2,3), in terms of unit vectors b;, b;, b; shown in Fig. 7. The angles yl and 
yz are shown as positive angles in Fig. 7. The appendages 6, and d2 in the figure 
are each uniform thin rods of mass per unit length p ,  mass m, and length 2L (so 

that m = 2pL); the central body 6, is a homogeneous cylinder of radius r ,  and the 
total system mass is <%. The symbols R and J in Eqs. (259) are defined by . 

A 

A 

(260a) 
A 

R = mL/<% 

the latter being the moment of inertia of a single rod about its hinge axis, which 
is parallel to by. Rotations of appendages relative to the main body are resisted 
by linear rotary springs with identical spring constants k. 

The origin of Eq. (1) of Ref. 31 is in the Newton-Euler equations for each of 
the n + 1 bodies of the system, and in this indirect sense Eqs. (259) are derived 
in Ref. 31 by a Newton-Euler formulation. As noted in that reference, however, 
it is of course also possible (and more efficient for an experienced analyst without a 
ready-made computer program) to obtain these equations from the first principles 
of Newton and Euler. Equations (259a) through (259c) can be obtained simply by 
taking the inertial frame time derivative of the system angular momentum for the 
system mass center. Equation (259d) is available from the dot product of bO, and 
the equation (see Ref. 38, p. 410) 

MPI = H 4  + mc, X P, (261) 

where MPI is the moment about pl applied to il, H% is the inertial angular momen- 
tum of 6, referred to p , ,  c, = Lb',, and P, is the vector from the (inertially station- 
ary) system mass center to pl. Equation (259e) is available from a similar calcu- 
lation, applied to 4,. 

A 

After Eqs. (259) are obtained by a Newton-Euler formulation, it is possible (by 
inspection in this case and by eigenvalue analysis in the general case of nominally 
constant a) to discover a coordinate transformation that simplifies the appearance 
of the equations of motion. In this example it is clear that Eqs. (259) will be sim- 
pler if rewritten in terms of the new generalized coordinates 

'I1 = y1 + y2 

1 2  - - y1 - y2 

(262a) 

(262b) 

i 

w 

i! 
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Equations (259a through c) can be rewritten directly in terms of the new coordi- 
nates, and Eqs. (25911,e) can be replaced by their sum and their difference and 
then transformed. The result is 

Because only the final equation involves qr, and this equation is satisfied by 
sudsfactory for she parposes of dynamic analysis of m t a t i d  

body to trtmcate this system of equations, abandoning 
Eq. (a) entirely. For symmetric systems such as this example, it might be 
appiue!nt wen before the equatims are derived that irrelevant generalized coordi- 
nates can be ident@ed and equations in these cootdinates eliminated from the 
equations of motion. It is a shortcoming of the Newton-Eder approach (in con- 
trast with the methuds of Lagrange and Hamilton) that such coordinates cannot 
be exduded from the formulation at the outset. 

b. &ne% qtcmdcoardinate CqUaNoM. As developed in Subsection 11-A-4, b e ’ s  
quasicoordinate €onnulation of D’Alembert’s principle can be applied to the 
three-body example in Fig. 7 by selecting the quasi-coordinate derivatives10 

A .  A .  
Ul = y1, u2 = y’2 

A A 4 
u:{ =01, u, = Y, u5 = 0 3  

and recording the equations of motion (see Eq. ma) 

and 

A 4 
1OWe could alternatively choose +, = u1 and i, = u,, noting Eqs. (262) and (263). 
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The vectors Vi1 and are obtained from 

e 

(267b) 

where R j  and o’ are respectively the mass center inertial velocity and the inertial 
angular velocity of the jth body. 

For this example, the inertial angular velocities are 

w1 = o0 + +,b; = (u, + u3) b: + u,bq + u5b0, (268b) 

Since the three-body system is force-free, its mass center is inertially stationary, 
and we can measure RO, R’, and R2 from that point. Mass center definition then 
provides the relationship 

or 

in which the definition of R in Eq. (260a) has been employed. With the additional 
position vectors 

we can differentiate twice with respect to time and complete the kinematic 
analysis required by Kane’s procedure. Before proceeding, however, we should 
examine our limited “small deformation” goals; simplifying assumptions should 
be incorporated as soon as possible for most efficient analysis. In view of our 
decision to linearize in yl, y2, i2, y,, y2, we might be tempted to try to eliminate 
much of the labor from our problem by dropping all nonlinear terms in yl and y2 
(and their derivatives) at the outset of the kinematic analysis, prior to differentia- 
tion. We must be careful, however, to retain all linear terms in every vector 
appearing in Eqs. (266), and this implies the retention of certain nonlinear terms 
in Eqs. (267). (Similar precautions must be taken with Lagrangian and Hamil- 
tonian formulation, since partial differentiations of second degree terms in the 
kinematic equations can produce first degree terms in the equations of motion.) 

In this report our objective is not simply to obtain the hal linearized equations 
expeditiously; we would also like to explore the challenges of the unrestricted 
motion problem. For this reason, and to expose the dangers of premature lineariza- 
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tion, in the illustration of Kane's method and subsequent methods as well we will 
refrain from linearizing until we can see clearly what the cost of complete non- 
linear analysis would be and at what point (in retrospect) we could have 
linearized. 

Accordingly, we perform inertial time derivatives of Eqs. (269) to obtain R O ,  R l ,  

and &. These differentiations are greatly facilitated by the relationships 

6; = (oo + j.,b;) X b: 

= (ol + fz) (bicos y2 - bO, sin y2) + oZ sin yzb; - cos yz b; (270a) 

Si = (ao + X b; 
= (wl -+ f l j  it; cos yl - ta sin yl) + (oZ sin yl - o3 cos yl) 3; (270bj 

We can now compare Eqs. (267) with Eqs. (268) and (271), and (noting the 
definitions in Eq. (264)) record Kane's coefficient vectors by inspection 

V:o = R (b: sin y1 - b! COS yl) E R (,,a: - b!) (273a) 
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Vi1 = - (L  - R)siny,b;+ (L - R) cosylbir  ( L  - R )  (b: - ylb i )  (273b) 

V? = R (bi sin y, - b! cos y l )  g R (biy, - b:) 

V:O= R(-b;siny, f b i c o s y , )  =R(b: - y 2 b i )  

Vi1 = R (  -bO,siny, + b; cosy2) Y R(b: - y2bi )  

V? = ( L  - R) (siny, b! - cosy2b~) E ( L  - R) (y2b!j - b!) 

V3 = R [b; (sin y1 - sin y,) + bi (cos y2 - cos yl)] E R (y ,  - y2) b: 

Vi1 = - [ ( L  - R)sinyl + Rsiny,] bi + [ r  + (L - R)cosy, + Rcosy,] bi 

(273c) 

(273d) 

(273e) 

(273f) 

(273g) 

r [ - L ~ , + R ( y , - y ~ ) ] b ~  + ( r + L ) b ;  (273h) 

V;Z= [ (L-R)s iny ,+Rsiny , ]b~-  [ r + ( L - R ) c o s y 2 + R c o s y l l  b? 

r [Lyz + R (vi - yz)] bo - ( I  + L )  bo, (273i) 

V:O = R (siny2 - sin yl) by R (y2 - yl) by (2731) 

V> = [ ( L  - R) sinyl + Rsiny,] b; E [Ly, + R(y, - yl)] by 

V:z = - [ ( L  - R)siny2 + Rsiny,] by r [-Ly2 + R(y l  - y2)l  b'i 

V:o = R (COS yl  - COS y2) b; c 0 

(273k) 

(2731) 

(273m) 

V2 = [ I  + ( L  - R) COS yz + RCOS yl] by = ( 7  + L )  by (2730) 

0; = 0; = 0 (273r) 

a', = b; (273s) 

Note that the linearized approximations recorded in Eqs. (273) could not 
have been obtained correctly from the linearized inertial velocities recorded in 
Eqs. (272), although they coukl have been obtained from an approximation of 
Eqs. (271) in which nonlinear terms in y1 and y2 were ignored without imposing 
any size restrictions on 9, and yz. 

The next step in this procedure is to prepare to utilize Kane's coefficient vectors 
as required by Eqs. (266); this demands expressions for Rj, Hj, Fj, and Mj. Now 
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it is quite cl,ear that these expressions can be linearized immediately in yl, yz, and 
their time derivatives. 

Eo = Io 0' = Z : w x  + Z ; Q ) ~  + ZtoR 

(where Z:, Z;, Z; are the mass center principal axis inertias of J0) 

HZ = 12 - ( 0 0  + j.,b;) r (F) { [b;b; + bib; - (bib; + b!b:)T21 (00 + j.,b:)} 

= rs) {b; (ol + 7j2) - bi W 3 y 2  + b: ( ~ 3  - ozyZ)> (275c) 

Inertial time daerentiation then provides 

(276a) 
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H2 = (F) {by [& + ;iz + wzw3 + (OX - 0:) yz]  

(276b) 

We can at last obtain a suitable approximation of f ; (k  = l;.., 5) from Eq. (266b) 
by substituting Eqs. (273), (274), and (276). The ensuing calculations finally yield 
the following results (after substituting the definitions in Eqs. (260)) 

- = - (5% - 2m) RZ rjl  - i"* - (0: + oX) (y1 - y2)] 

- m ( L  - R )  { & ( r  + L )  + ( L  - R)?,  + Ryz - (w: + wX) [ ( L  - R)Y,  + Ry2] 

+ 0203 ( r  + L )  - ( r  + L )  (0: + yl} 

+ mR{ - & ( r  + L)  - ( L  - R ) y 2  - Rjl + (0: + uX) [ ( L  - R ) y z  + Ryl] 

- 0 2 %  ( r  + L )  - ( r  + L)  (0: + of) yl} 
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= - Z1& - (J + 3 R r )  (jjl + yz)  + (ZZ - Is) 0203 + ( J  + 3 R r )  (on - of) (y1 + yz) 

(2nd 

In the preceding expressions the mass center principal axis moments of inertia 
of the undeformed system have been employed, using the relationships 

(278a) 

1 2  = z," (278b) 

(278c) 

Having found the generalized inertia forces f:,....f: , we have only to obtain 
expressions from Eq. ( m a )  for the generalized active forces fl, * - * , f 5 ;  corre- 

ii 
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sponding generalized forces are then summed as in Eq. (265) to obtain the final 
equations of motion. 

Although in applying Eq. (266a) we could anticipate the disappearance of 
nonworking constraint forces from the generalized active forces, and substitute 
only Ma = k (yl + y2) b; and MI = -ky,b; and M2 = -ky,by into the formula, 
it may be more instructive to introduce the constraint forces and watch them 
disappear from Eq. (266a). Accordingly, we will let F'O and FZo be the forces 
applied to 6 0  by dl and d2 respectively, and denote the torques applied to 6 0  at 
the hinge connections t06, and 4, by ky,b; + rib; + rib; and ky2by + r2,bi + r:bi 
respectively. Then Eq. (266a) provides, for example, 

and similarly 

I 

I 

f 

(279b) 

and 

f 3  = f4 = f 5  = 0 (279c) 

When Eqs. (279) and (277) are combined as required by Eq. (265): the result- 
ing equations of motion are identical to those previously obtained from a Newton- 
Euler formulation and recorded as Eqs. (259). Thus neither procedure has a com- 
putational advantage over the other; any advantages must be claimed on the basis 
of ease of formulation. Before weighing this issue, we proceed to derive equations 
of motion from yet another point of view. 

ri 
e. Lagrange's quasi-coordinute equations. Our derivation of the general theory 

of Lagrange's quasi-coordinate equations culminated in Eq. (147), which appears 
rather formidable when it is to be applied by hand calculation to the three body 
system in Fig. 7, with as many as eight degrees of freedom (six for the central 
rigid body 60 and one for each of the rotating appendages). Both to reduce the 
labors of this example and to illustrate results of general theoretical value, we shall 
establish some operational short-cuts for the application of Eq. (147). 

It should first be recalled that in the absence of external forces the system mass 
center is inertially stationary. If instead of working with translation coordinates for 
lo we adopt the (constant) coordinates of the system mass center, we can reduce 
the system to one having five degrees of freedom. 
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The obvious choice for a full set of quasi-coordinates is that displayed in 
Eq. (264). A more subtle choice would be to replace u1 and uz by and li2 as 
defined by Eqs. (262); this option, which was also available with Kane's approach, 
we forego for the present. 

It appears from the derivation preceding Eq. (147) that we must next introduce 
some set of generalized coordinates 91, q2, q3 describing the inertial attitude of do, 
to construct the 5 by 5 matrix W appearing in Eq. (147) and defined by Eq. (134). 
There would follow the inversion of W, the determination of Wii,q and W,q., (W,t 
being zero), and the whole painful process already illustrated in the two preceding 
examples. This labor is particularly unpleasant in this example because we know 
from the Newton-Euler formulation or Kane's equations that inertial attitude 
angles of do have no place in the equations of motion. It can't make any diflerence 
which set of attitude angles we choose; they must eventually all disappear when 
we grind out the details of Eq. (147). 

Fortunately, we can markedly reduce the labors of dealing with W whenever 
we choase three ob the qaasi-coordinate derivatives to match the scalar com- 
panents of the bertial angular velocity of some rigid body or reference frame for 
a v& basis fixed in that body or frame, and choose the remaining quasi- 
coordinates as simply the remaining generalized coordinates. With this choice, we 
always have a matrix W with the structure 

where W, is a 3 by 3 matrix. Thus the inverse of W is simply 

With this choice of quasi-coordinates, the matrix W-ly in Eq. (14%) always 
becomes 

i 

W - ' - [  O ' o_ ] Y -  ----- 
0 l w  

as indicated for the rigid body in Eq. (198). (To prove this contention, merely 
repeat the development leading to Eq. (198) in the example, and note that the 
purely kinematical and mathematical steps in that derivation never utilize the 
single rigid body restriction of the example.) 

With these observations, we discover that Eq. (147b) is most clearly presented 
as the two distinct matrix equations 

and 

i 

I 
L 
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where the matrix A defining the m constraints has been partitioned as 

A = [A, I A,] 

with A, of dimension in by 3, and the generalized force and coordinate matrices 
have similarly been partitioned as 

Q = {Q"~Q"'}' and q = {91T I qoT}* 

The effect of this separation is to permit the use of Lagrange's quasi-coordinate 
equations (Eq. (284)) where they are most powerful, and to remain with the 
generalized coordinate equations (Eq. (283)) where the quasi-coordinate formula- 
tion becomes a burden. 

In application to the three-body system in Fig. 7, we obviously have h = 0, and 
since we know that the attitude variables for io cannot enter the problem we 
anticipate that F,qo = 0 as well. The matrix q1 has the elements yl and y2 (or if we 
prefer, TI1 and q2). 

The system kinetic energy is by definition 

where p is the position vector of a generic mass element from the system mass 
center CM, which is inertially stationary. It is convenient to replace p by the sum 
p + e, where e is the vector from CM to the point 0 fixed in $,, and occupied by 
CM when y ,  = yz = 0, and p is the generic position vector from 0. 

Making use of the mass center defining requirement 

I 

I 

I 

€ 
p d m =  ( p + c ) d m = O  J I  

we can write 

( p + i ) * ( p + c ) d m =  p * ( p + c ) d m  I 
= /pepdm + "./ pdm 

= /;*;dm + 2 b* (o  X p)dm + o X [ / p * ( o  x p)dm] / 
= 3 (8 + 0 x c)  (; + 0 x c) (287) 

where a circle over a vector implies time differentiation in the reference frame 
established by io, and 0 is the inertial angular velocity of do. Among the terms in 

N 
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Eq. (287) is one that simplifies as follows: 

where U is the unit dyadic and I is the (time-varying) inertia dyadic of the system 
fer point 0. 

For all differential mass elements within &,, the term 6 is zero, while for those 
within 1, and ir p is simply a vector woss product. Thus the first two system 
integrals in Eq. (287) can be replaced by single body integrals as follows 

= I (+? + +:> 
+ 2 [ i , (b; cos y1 - b: sin y,) 

+ 7,  (b; cos y2  - b; sin y,)] (0,rb; - qb;) 

X 12'ydy + 2j.,(b0,cosyl - bO,siny,) 

i 

t 
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= J (G; + +;) + 2 m r ~ w  (G1 COS y l  + i2 cos y2) 

+ 2J [;lwl (sin' yl  + cosz yl )  

+ +*wl (sin2 yz + cos' yz)l 

= J (9; + +;) + 2 $ , ~ ,  ( J  + mrL cos yl)  

+ 2+2w1 (J + mrL cos yJ (289) 

A (Recall the definition of J in Eq. (260b), and the definition m = 2pL.) 

Now we can return to Eq. (287) and expand the final term. The basic ingredient 
of this term is c, which by mass center definition satisfies the equation 

- <%'c = m (rb! + Lba) -I- m ( - rb! - Lb2,) 

(290) 
- - mL [bz(cosyl - cosy?)+ b:(sinyl - siny,)] 

With the implications 

and I 
o X c = {by [03 (cos y1 - cos y2) - o2 (sin yl - sin y2)] 

+ b; [wl (sin?] - siny.)] - b; [wl (cosyl - cos yz)]} mL/,71 

(292) 

we can expand the final term in Eq. (287) as 

- Lq (: + 0 x c)  (2 + w x c) = - {(;l sin yl - i2 sin yz)2 + (i2 cos yz - +l cos y1)2 

+ [w3  (cos yl - cos y2) - w2 (siny, - siny2)I2 

+ w: [(siny, -  sin^^)^ + (cosyl - cosy2)'] 

+ 2w1 (sin yl - sin y2) (i1 sin yl - Y z  sin y2) 

+ 2% (cos y1 - cos y2) (i.1 cos y1 - y z  cos yz)} 

X m2L2/31  (293) 

t 

Finally we can combine Eqs. (287), (288), (289), and (293) into an expression for 
T that is exact and very nearly explicit in its dependence on the kinematic vari- 
ables. In transition we replace the vector-dyadic product o I o by its matrix 
counterpart wTZw, adopting the vector basis established by b;, b:, and bO, . The result 
is (after slight simplification of Eq. (293)) 

22' = w T Z o  + J ($: + i:) + 2w1 [G1 ( J  + mrL cos yl) + i2 ( J  + mrL cos y2)] . .  
- { 7: + y:  - 2+4* (cos yl cos yz + sin y1 sin yz) 

+ 20, [(+1 sin yl  - ;2 sin y2) (sin y1 - sin y2) 

+ (il cos y1 - ;2 cos yz) (cos y1 - cos yz)] 
+ 2u: (1 - cos yl cos y2 - sin yl sin yz) 

+ E03 (cosyl - cos yz)  - o2 (shyl  - sinrz)]2} mZLz/W (294) 
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To make T fully explicit in terms of wl, o,, w3, yl, y,, yl, and y2  as required by 
Lagrange's equations, we must recognize that 0 = { u J ~ W Z O Q } ~  and that the inertia 
matrix I in vector basis b:, bq, b! is given by 

A 

I = \ (p'pU - pp') dm (295) 

where p represents p in basis by, bO,, bo,. We can allow I:, It, I! to represent the 
(principal) moments of inertia of do in this basis, and let Zo be the corresponding 
inertia matrix of do; then we have 

,- 

Z = I o  + I (pTpU - p p T ) d m  + I (pTpU - p p T )  dm 
J '2 J', 

The first of these integrals is available from the dyadic 

* [rbz + ?/(biasy, + b:shy1)] U 
- [*t + y(b,Ocosyl + bisinyl)][rb," 

+ ?/ &: 71 + b! Y L 11 1 P d?/ 
= mr' (U - bib:) + J (U - b!b: cos' y1 - b:b: sin2 y1 

-b:b:siny,~sy, - bib;~iny,co~y,) 

+ mrL (2 cos 7lU - 2b,"b,O cos y1 - b;b; sin 7, 

- bib: sin yl) 

= ( mrz + J + 2mrL) (U - bib;) 
+ J (bib: sin2 y 1  - b:b: sin2 y1 - bib; sin y1 cos y1 

- bib: sin y1  cos yl) - mrL [2 (1 - cos yl) U 

+ 2b:bt cos y1 + btb: sin y1 + bib: sin yl] (297) 

The second integral in Eq. (296) corresponds to a dyadic represented by 
Eq. (297) with 7, replacing yl. 

Now we can return to Eq. (296) and record the elements of the symmetric 
inertia matrix I explicitly, as follows: 

I,, = I! + 2(mr2 + J + 2mrL) - 2mrL (2 - cos y1 - cos y z )  

I,, = I; + J (sin2 y1 + sin2 y,) 

I , ,  = Z; .+ 2 (mrz + J + 2mrL) - J (sinzyl + sin2 7,) 

(298a) 

(298b) 

- 2mrL (2 - COS y ,  - c o s  y,) (298c) 

t 

ii 
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I , ,  = 0 (298d) 

113 = 0 (298e) 

I , ,  = -I (sin y ,  cos 7 ,  + sin y 2  cos y 2 )  - mrL (sin y l  + sin y 2 )  (298f) 

The values of the inertia matrix elements that survive when yl = y z  = 0 are the 
principal axis inertias of the systeili in its nominal configuration about the system 
mass center; these we can call I , ,  12,  and I , ,  and we can rewrite Eqs. (298a through 
c) as 

I , ,  = I ,  - 2mrL (2 - cos 7 ,  - cos y 2 )  (298g) 

I , ,  = I ,  + J (sin' yl + sin' y2) (298h) 

I , ,  = I ,  - J(sin2y, + sin2yz) - 2mrL (2 - c o s y ,  - c o s y 2 )  (2981) 

Finally we can return to Eq. (294) and record T in explicit scalar form as 

1 1 
2 2 

+ c%fR2jlly2 (cos yl cos y, + sin yl sin y2) 

+ W, { (il + y2) J + +13fRr cos yl + +23!R~ cos y2 

- ,%R' [ (VI s h y l  - y z  shy2)  (sin y ,  - siny2) 

T = -(Z,W; + 1 2 ~ 5  + 1 , ~ : )  + - (J - S R ' )  (y: + +;) 

+ (;I cos Yl - y 2  cos y2) (cos y ,  - cos y2)I 1 

- w 2 ( s h y l  - siny2)I2 - .%rR(2 - cosy, - cosy2) (W: + d) 

+ 2 J (sin' 7, + sin2 y2) (& - W:) 

- W2W3 [l(sinylcosyl + siny2cosy2) + .%Rr (sinyl + s inp) ]  (299) 

in which we have replaced mL by .%R, in accordance with the definition appear- 
ing in Eq. (260a). 

} 
1 

The task demanded by Lagrange's equations in the form of Eqs. (283) and 
(284) is the partial differentiation of T with respect to w,, 02, os, yl, y2, i.,, and &. 
As we have expressed T in Eq. (299), this appears to be a formidable undertaking. 
(Remember that our example is a very simple symmetric system of three rigid 
bodies; the derivation of Lagrange's equations of motion for the unrestricted 
motion of a general set of even six or eight bodies would become a most dreary 
endeavor!) 

But for this example we have agreed to examine only the restricted case in 
which only first degree terms in yl, yz, yl, and +2 are retained in the equations of 
motion. For the Newton-Euler formulation, this restriction meant that we could 
omit terms above the first degree in these variables wherever they occurred, 
replacing sin yl by yl and cos yl by 1 from the very outset; a glance at the elements 

I 

I 

I 
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of the inertia matrix I in Eq. (298) suggests the degree of simplification that 
follows from a procedure of 'linearization as you go" in deriving equations of 
motion. 

In a Lagrangian formulation, however, one must not linearize prematurely; 
second degree terms in yl  appearing in I in Eq. (298) become first degree terms in 
the equations of motion after the partial differentiation by yl indicated by 
Eq. (283). This means that the most that we can do in approximating T in Eq. (299) 
is to reduce it to a quadratic approximation in y,, y2, il, and i2. With the 
substitutions 

and the truncation of terms above the second degree, T in Eq. (299) becomes 

Finally the Epbors of partiaI and ordinary differentiation can begin. Modest 
e&rt produces the differentiated kinetic energy matrices 

The generalized force matrices in Eqs. (283) and (284) become 

S ~ c e  h =,O in Eqs. (283) and (284), all that remains is the time differentiation 
of T,;I and T,w and multiplication by Z (as defined after Eq. (199)). 

I 
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Equation (283) then produces the scalar equations 

Equation (269) produces the scalar equations 

After a bit of minor rearranging, these equations become identical to those ob- 
tained from a Newton-Euler formulation or Kane’s approach, and recorded as 
Eq. (259). Any advantage to be gained one way or another must rest on ease of 
derivation, which speaks for itself. 

I t  has been noted that one of the valuable features of the methods of analytical 
mechanics is their generalization of the coordinate concept. In this three-body 
example, we know that pl and p2 are “better” coordinates than yl and y2 (compare 
Eqs. (259) and (263)). With Lagrange’s method, we should be able to use v1 and v2 
immediately. In practice, however, it may be difficult to recognize the best set of 
generalized coordinates in advance, or to obtain T in terms of them once they have 
been chosen. In this case, for example, even the approximate T in Eq. (300) offers 
little clue that we should substitute 

I 

t 
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If we recognize the virtues of this substitution on physical grounds, and trans- 
form T to 

then upon application of Eqs. (283) and (284) one does indeed obtain Eqs. (263) 
directly. 

d. Lagmngd8 generalized coodinate equations. To apply the familiar Lagrange 
equations, as dispbyed in Eq. (70) of Subsection 11-B-1 for example, we must have 
the kine&ic energy T expressed wholly in terms of generalized coordinates, with 

te derivatives permitted. To formulate equations of motion fur 
system in Fig. 7, we would be obliged to rewrite T as it appeaxs in 

Eq. (299), eliminating W, wP, and w8 by the substitution of some set of kinematic 
equations involving three attitude angles and their derivatives; an example can be 
found in Eq. (170). Linearization in these angles would not be permissible for this 

ion for T w u l d  become horribly unwieldy. The difFeren- 
(70) would be straightforward but far more odious than 

attempted in this report, and when the job was done the equa- 
more complex in appearance and more difljicult to integrate 

ne$. dmn Eq. (259). It should be obvious that Lagrange’s generalized 
COoTdinate equations would be a very poor choice for this problem. The first order 
form of Lagrange’s equations proposed in Ref. 35 (see Eqs. (153) and (154) in Sub- 
section C-1) would appear preferable to Lagrange’s second order equations, but 
still not competitive with the other methods considered here. 

e. Hamilton’s equntiom. If we simply recognize that the interbody springs in 
the system of Fig. 7 give rise to generalized forces that can be represented as par- 
tial derivatives of the scalar potential energy 

(302) 
1 
2 v = - k (y :  + y : )  

then we can apply Hamilton’s canonical equations in the form 

Hamilton’s approach suffers the serious disadvantage of requiring the selection 
of five generalized coordinates for this problem, including three attitude angles 
for 60, and then the representation of kinetic energy T in terms of q’s  and 4’s. As 
in the case of the Lagrangian generalized coordinate formulation, we would be 
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obliged to rewrite 5; from Eq. (300) as T ( 9 , i ) .  If we choose to measure the atti- 
tude angles of do from an inertially fixed frame, we will find that T (9,4) is a 
homogeneous quadratic form in the generalized velocities. This simplifies some- 
what the task of calculating the generalized momenta in the matrix p ,  which from 
Eq. (201) becomes 

and also simplifies the expression for the Hamiltonian, which from Eq. (156) be- 
comes simply 

A = %4 + V(9)  (305) 
- 

where T (9, p )  represents the kinetic energy expressed in terms ofseneralized 
coordinates and generalized momenta. (Note that this is not simply T (9, w )  from 
Eq. (3W)  

The major drawback in the Hamiltonian approach is the necessity of inverting 
M in Eq. (304) and using 

(306) 4 = M - l p  

obtain expressions for (il;.*,(i5 to substitute into T ( 9 , i )  in order to obtain 
T (q,  p), and hence A. The matrix M will depend upon the choice of attitude 
angles ford,,. Inspection of Eq. (300) is sufficient to establish that the 5 by 5 matrix 
M will be essentially full, and not easily inverted by hand. (If for example ol, y, 
and o3 from Eq. (170) were substituted into Eq. (300), only four of the twenty-five 
terms in M would be zeros.) 

Even without seeing the results, we might speculate about the structure of 
Hamilton’s equations for the three-body system of Fig. 7. We would have ten first 
order equations (rather than effectively seven first order equations appearing in 
Eq. (259)). Hamilton’s equations would involve attitude angles in a way that will 
probably result in lengthy expressions for the right side of Eq. (303). But we are 
certain that the left side of Eq. (303) is a single column matrix of first deriva- 
tives, with no time-varying coefficient matrix. Because the repeated inversion (or 
Gaussian elimination processing) of the coefficient matrix is a serious computa- 
tional burden, Hamilton’s equations would be attractive for digital computer 
numerical integration once they finally were obtained. It would be sophistry to 
argue however that these facts establish an advantage of Hamilton’s equatiom 
over any of the methods that lead to Eq. (259); if we are willing to invert a 5 by 5 
matrix by hand to obtain Hamilton’s equations, then we can also invert the 5 by 5 
coefficient matrix of highest derivatives in the matrix version of Eq. (259), and 
again circumvent the numerical problems associated with a variable d c i e n t  
matrix. 

f .  S u m m y  for the symmetric three-body example. Equations of motion have 
been derived for the small deformation and unrestricted rotation of the systeni in 
Fig. 7 in four distinct ways, although only two derivations have been presented 
in detail in this report. The quasi-coordinate formulations of Kane and of Lagrange 
have been applied explicitly here. In Appendix C of Ref. 31, a computer algorithm 

I 

i 
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for equation assembly is applied to this same example; this algorithm has its roots 
in the methods of Newton and Euler, but the Newton-Euler equations have been 
manipulated to eliminate constraint forces and torques in a way proposed by 
Hooker (Ref. 26). Finally, in an ad hoc scratch sheet derivation not recorded in 
print, the author has derived equations of motion for this system by means of first 
principles of Newton and Euler. 

Although these four methods appear to be very different from one another, they 
all produced the same equations of motion, recorded here as Eq. (259). 

Preliminary investigation was enough to justify the conclusion that the applica- 
tion of Lagrange’s generalized coordinate equations would produce equations of 
motion that were different from and far more complex than those obtain& by the 
four methods previously discussed. 

Attempts to apply Hamilton’s canonical equations were thwarted by the neces- 
sity of investing a full 5 by 5 matrix by hand. This approach is clearly unaccept- 
able for ~naefi mulriglerigid-body models of spacecraft. 

4. Paint- rigid bodies m a topological tree. Experience with previous 
examples genesates the suspicion that some of the different equation derivation 
methods in the literature are less Merent than they appear; for the holmmic 
system considered thus far in this report there have emerged identical sets of 
equations of motion from several quite different derivation procedures. In this sec- 
tion we will establish that three dikent methods give identical equations for a 
class of mathematical models of considerable theoretical interest and great prac- 
tical utility: the system d point-connected rigid bodies in a topological tree. 

A set of n + 1 rigid bodies all interconnected by n points, each of which is 
common to two bodies, has been labeled in the literature as a system of point- 
connected dgid bodies in a topological tree. The tree topology, which infers the 
absence of closed loops formed by chains of rigid bodies, is implied by the pres- 
ence of connections that number one less than the number of bodies, as long as 
a12 bodies are interconnected. With this topology there is a unique internal path 
between any two bodies of the system. Without loss of generality, one can con- 
ceive of any set of point-connected rigid bodies as a (possibly larger) set of rigid 
bodies interconnected by line hinges, admitting the possibility that some bodies 
might be massless and dimensionless abstractions. 

The problem of equation formulation for multiple-rigid-body systems has a rich 
modem literature, because spacecraft simulation requirements made the problem 
important at the same time that digital computer development made it possi- 
ble to extract information from the equations by means of numerical integrations. 
The contributions of Hooker, Margulies, Roberson, Wittenburg, Velman, and 
Russell have been noted previously in this report (see References). Early efforts 
were plagued by the presence of interbody constraint torques in the equations 
(Refs. 13-15 for example), but in the methods of Russell (Ref. 18) and Hooker 
(Ref. 26) these torques are eliminated and the equations are reduced to their mini- 
mum possible dimensions. Because Russell’s contribution is not a set of explicit 
equations of motion of n + 1 bodies but rather a method for generating such 
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equations and a computer program for processing them, we cannot without digres- 
sion compare his results to those obtained by the procedures of analytical dy- 
namics that we are examining in this report.11 Hooker’s equations, in contrast, are 
fully explicit, and we can readily compare his results to those developed in this 
report. Hooker‘s method, which is a variation of the earlier method of Hooker and 
Margulies (Ref. 13), has been adopted as the foundation for both analytical and 
computational work at JPL, and there is available in Ref. 31 a more detailed expo- 
sition of Hooker’s ideas than can be found in Hooker’s own original brief paper 
(Ref. 26). In what follows, therefore, Ref. 31 is adopted as the source for com- 
parisons with the “Hooker-Margulies/Hooker” equations. In particular, this means 
that the labeling convention of Ref. 31 is retained in this report, and the practice 
of working exclusively with line hinge connections is adopted. 

In what follows, the equations of motion for a point-connected set of rigid 
bodies in a topological tree are briefly presented as they appear in Ref.‘ 31, and 
then the quasi-coordinate methods of Kane and of Lagrange are applied to the 
same system. The final equations are shown to be identical. Alternative derivation 
procedures (such as Hamilton’s) are discussed briefly. 

a. The Hooker-Margulies/Hooker equations. The equations of motion of n + 1 
rigid bodies40,61,..., 6, interconnected by n line hinges are, from Eq. (1) of 
Ref. 31, given by 

a n 2  

. .  

[g CokAk 

I 

lgnTC k t 9  E*CnkAk 

Here w0 is the 3 by 1 matrix of the inertial angular velocity of 4, for a vector basis 
b:, b;, bi fixed in 4,. The angle yl describes the rotation of 4, about a hinge line 
common to dl and do, with positive sense established by a unit vector g’. Similarly 
yz describes the rotation of 6, relative to a contiguous body of lesser index, and 
so on up to yn. The coefficient matrix on the left side of Eq. (307) is symmetric, 
and generally depends on time either explicitly or through the angles yl;**,yn. 
Because we will not dwell upon Eq. (307) in this report (prefemng to concentrate 
on the antecedents in the derivation of this equation), we can skip the lengthy 
process of explicitly defining the elements of the left side coefficient matrix here; 
Ref. 31 provides these definitions on page 14.’* The symbol Ak is also not of spe- 
cific interest here; it includes external forces and torques and a large collection 
of terms involving system parameters and kinematic variables having lower order 
derivatives than appear explicitly on the left side of Eq. (307). See p. 15 of Ref. 31 
for the definition of Ak. We are concerned with the remaining symbols on the 

11Russell’s method warrants the comparative evaluation accorded here to other methods, but the 
present report is limited to methods of analytical dynamics. 
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right side of Eq. (307), which are defined as follows (see pages 10-15 of Ref. 31 
for more details): 

A 
(1) 53 = {O,l, ..., n } .  

(2) 9 = {1,2, ...) n}. 

(3)  Cjk is a direction cosine matrix relating the orientations of dj and dk. 
(4) rk is the component along the hinge axis of the torque applied to dk by the 

(5 )  g" is the 3 by 1 matrix representing g" in a vector basis fixed in 4k. 

A 

attached body of lesser index. 

1 if hinge i lies between 6, and /k. - .  '' { 0 otherwise (6) F j k  is a path element such that E 

Equation (307) is important here only because it provides an indication of the 
structure of the equations of motion as they are processed by the digital computer 
for nutperid integ@ion. More important for the analytical purposes at hand is 
a version of Eq. (W?) that appears in Appendix A of Ref. 31, part way through the 
derivation of that M result**. Equations (A.14) and (A.15) on page 78 of Ref. 81 
appear after minor n o t a t i d  revision and condensation as 

or, after exchanging indices in the double s u m  terms, dot-multiplying by bt, and 
reversing the summation sequence, 

bt*C[Tj -Eci + C(IFf X f j  - L8jX S j P j ) ]  = 0, i = 1,2,3 
fis 8 4  (3084 

and also (from Eq. (A.15)) 

We shall refer to Eq. (308) in what follows as the preliminary form of the Hooker- 
MarguliedHooker equations. As elsewhere in this report, Hj is the inertial angu- 
lar momentum of rigid body d k  with respect to its mass center cj, 3d8 is the mass 
of d,,  and f8 is the force applied to 6, erclusiiie of nonworking constraint forces. 
The symbol Tj represents any external torques applied to dj, excluding torques 
due to contact with other bodies of the system. The symbol p8 represents the posi- 
tion vector of the mass center cI of 4, with respect to the system mass center (CM). 

Wefinition 39 on page 14 of Ref. 31 should read 

E k , C O j ~ ~ j ~ ~ g  = c cr,co'*"c*& a,,* 2 
n9) fr9) r e 9  

- 3 c ck j  (CorDJrrClrDif - COj Dtr DW) C*& 
r a g  f a d - r  

13As shown in Ref. 31, the path from Eqs. (308) to Eq. (307) is an arduous one, involving the 
construction of difficult kinematical relationships that represent an important part of the 
contribution of the original paper by Hooker and Margulies (Ref. 13). 
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The position vectors Dj8 and Lja in Eq. (308) are as defined in Ref. 31, page 13, 
with the following implications. 

The position vector from c, to the hinge point on 6, leading to 6, is called 
Lkr, with Lkk = 0. A point b, (called the barycenter of 6,) is located with respect to 
ck by the position vector 

A 

and Dk‘ is defined by 

As shown in Appendix A, Eq. (A-22), of Ref. 31, 

(This identity, first established by Hooker and Margulies, is far from obvious, and 
is an important element of Ref. 13.) 

The immediate objective is to apply first Kane’s quasi-coordinate equations and 
then Lagrange’s quasi-coordinate and generalized coordinate equations to the set 
of point-connected rigid bodies in a topological tree, in order to compare the 
results with Eq. (308). 

b. Kane’s quasi-coordinate equatiom. As developed in Subsection 11-A-4, Kane’s 
quasi-coordinate formulation of D’Alembert’s principle can be applied to n + 1 
point-connected rigid bodies interconnected by n line hinges by selecting the 
quasi-coordinate derivatives 

(311a) A .  
, n  u j  r y j ,  = 1, . . . 

and recording the equations of motion (see Eq. (Ma)) 

where (as in Eqs. (65c) and (65d)) 

and 

JPL TECHNICAL REPORT 32-1593 



The vectors Vi, and 0: are obtained from the definitions 

(314a) 

and 

(314b) . A n + 3  
0 1  = p ; u ,  + 

k = l  

where Rj and oj are respectively the mass center inertial velocity and the inertial 
angular velocity of the jth body. 

For this example, as noted in Eq. (A-38a) of Ref. 31, 

d = o O +  Er,+rgr (315) 
n9 

Compariscrm of Eqs. (514b) and (315) in 'the light of Eqs. (311) yields half of 
Kane's &ent vectors, namely 

o: = E#, i e S  and k e g  ( 3 W  

and 

= b:, j e 9  and i = 1,2,3 (316b) 

T o  obtain the remaining d c i e n t  vectors, we require the kinematic expansion 
of Rj for comparison with Eq. (314a). If Re is the inertial position vector of the 
system mass center, then we have 

or, with Eq. (310), 

Since Daj is a vector fixed in 6,, we can write 

Now the combination of Eqs. (319), (315), and (311) gives 
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This result, when compared to Eq. (314a) provides 

112 

(321a) 

The combination of Eqs. (312), (313), (316b), and (321b) produces the three 
scalar equations of motion 

(322a) 

The combination of Eqs. (312), (313), (316a), and (321a) produces the n scalar 
equations of motion 

With the vector identity 

a b X c = b X c a = b (c  X a) 

for any vetors a, b, and c, Eqs. (322) become 

.. 
D8j X (fj - 3 j R j )  + (mj - HI) = 0, i = 1,2,3 (323a) 

if9 

and 

Motivated by past examples, we adopt the hypotheses that Eq. (323a) is 
identical to Eq. (308a), and that Eq. (32313) is identical to Eq. (308b). In com- 
paring these equations, we must recognize that mj and Tj differ only in that 
mj = Tj plus any moments about C j  due to interaction torques other than non- 
working constraint torques applied to 4, by contiguous bodies. In particular, 
interaction torques such as rjgj would have to be added to Tj to obtain mj. In 
Eq. (323a), however, the summation over le93 produces these interaction torques 
only in equal and opposite pairs, so that 

1 
4 
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With Eq. (324), it becomes apparent that Eqs. (323a) and Eq. (308a) are 
identical if and only if the quantity 

E(L8j X L%jpj - Daj X c'ljRj) 
j r 8  s c 8  

is zero. With the substitution of Eqs. (309) for D8j and Eq. (317) for R j ,  this 
expression becomes 

where the resultant force F on the total system obeys Newton's second law in the 
form 

F = .%k 
By mass center definirion 

so the terms in Eq. (325) involving E j  sum to zero, and Eq. (325) becomes (noting 
RP* (3w) 

since by Eq. (A-25) of Ref. 31 

Thus the equivalence of the three scalar equations in Eqs. (323a) and the vector 
equation (308a) is established. 

In comparing Eqs. (323b) and (308b), one must first recognize that EkO = 0 for 
all k, so that the apparent difference in summation ranges for i in these two equa- 
tions has no significance. Proper interpretation of Tj and mj produces the identity 

since the path symbols Ekj have the effect of limiting the range of the summation 
to those bodies dj for which 6 k  is on the path between dj and 6,; thus all of the 
interbody torques that appear in mi (but not in Tj) are summed in equal and 
opposite pairs, with the single exception of Skgk .  
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Thus for Eqs. (308b) and (32313) to be equal, we require only that the expression 

g“* Ekj (Dja X f a  - Lja X - C g“’ C ekaDsj x (fj - .%jRj) 
it9 a t 9  jti8 Mi8 

reduce to zero. The identity 

eliminates all forces in the expression of interest, which then becomes (exchang- 
ing dummy indices j and s in the first double sum, and reversing the summation 
sequence) 

We can again use Eqs. (309) for D”j and Eqs. (317) and (326) for Rj, and rewrite 
the parenthetical term in Eq. (331) as 

In returning this expression to Eq. (331), one finds that the terms in Eq. (332) 
involving alp’ sum to zero by virtue of Eq. (327), and those involving 3jDaj  
sum to zero by virtue of Eq. (329). Thus the proposition is proven, th,e expression 
in Eq. (331) is zero, and Eqs. (323b) and (308b) are identical. 

C .  Lagrange’s equations. As shown in Subsection B-1, Lagrange’s equations in 
terms of independent generalized coordinates provide exactly the same results 
as may be obtained from Lagrange’s form of D’Alembert’s principle; the diffa- 
ences in these two methods involve only the operational procedures employed to 
achieve these equations. Moreover, the same equations emerge from Kane’s quasi- 
coordinate form of D’Alembert’s principle whenever the “quasi-coordinates” are 
actually generalized coordinates; in this special case Kane’s D’Alembert method 
is identical to that of Lagrange, as shown in Subsection A-4. 

In application to the multiple-rigid-body problem, with quasi-coordinate deriva- 
tives selected as in Eqs. (311), one can therefore conclude in advance of derivation 
that n of the n + 3 scalar equations of motion obtained by Kane’s approach would 
also emerge (after many hours of labor) from a Lagrangian generalized coordinate 
formulation; these are the equations represented here by Eq. (323b), or (equiva- 
lently) Eq. (308b). 

The three remaining equations obtained by Kane’s method (or by the Hooker- 
MarguliedHooker procedure) most certainly cannot be obtained by a Lagrangian 
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generalized coordinate approach, since the kinematic variables OO,, oO,, O; are not 
derivatives of generalized coordinates. It will be shown here, however, that these 
three equations can be obtained by the application of Lagrange's quasi-coordinate 
equations, as represented by Eq. (284). 

In application to a holonomic system, Eq. (284) becomes 

- - 
(333) 

d -  - dt (T.,) + GT., - Wi'T , ,  = W;'Q0 

For the multiple-rigid-body problem, w is the 3 by 1 matrix representing ao in vec- 
tor basis b:, bo,, b:. The kinetic energy expression in terms of W, yl;. ., yn, + I , *  * ., fn 

is called T. The 3 by 1 matrix (I. contains some set of generalized coordinates (such 
as Euler angles) defining the inertial orientation of 6,. These are irrelevant to the 
physical problem, and will not appear in T,  so that T , p  will be zero. The matrix 
Wo is defined by the combination of Eqs. (280) and (134d), such that 

The 3 by 1 matrix of generalized forces Q" has the elements (from Eq. (22)) 

which with the substitution of Eq. (319) for Rj becomes 

Eq. (315) reveals that, for any index r, 

so that the generalized force becomes 

(335) 

The matrix counterpart to the three equations implied by Eq. (335) is (with all 
vectors in basis b:, b;, b:) 

so that in Eq. (333) the term WilQ" becomes 
u 

(337) 
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Thus the term W;lQo in Eq. (333) corresponds to those terms in Eq. (323a) 
involving fj and mj; more specifically 

and the scalar terms in the three rows of the column matrix in Eq. (337) are iden- 
tical to those produced by the dot-multiplications of b: with the terms involving 
f j  and mj, for i = 1,2,3, in Eq. (323a). 

Moreover, we can now recognize that the elements of the matrix Qo are no more 
than the scalar components in vector basis by, b!, bi of the external moment applied 
to the multiple-rigid-body system about the system mass center. This identifica- 
tion requires only the substitution from Eq. (310) of 

into Eq. (335) or its successors, and the recognition that (in view of the third law 
cancellation of interbody forces) 

where M represents the external moment applied to the system about the system 
mass center. 

There remains for the proof of the exact equivalence of Kane’s equation (323a) 
and - Lagrange’s equation (333) only the identification of the terms d/d t  (T,,) 
1- ZT,,,, in Eq. (333) with the terms involving Hj and R j  in Eq. (323a), for i = 1,2,8. 
This identification is most readily accomplished by recognizing that (by virtue of 
Eq. (338)) these terms must also be identical to the expression in vector basis 
b;, b;, b: of the inertial time derivative of the angular momentum H of the total 
system with respect to the system mass center. In other words, Eqs. (333) and 
(323a) must both be identical to 

bl.(M - H) = O  i = 1,2,3 (339) 

The identity of Eqs. (323a) and (339) is made obvious by the expression 

and its derivative (noting Eqs. (310) and (327)) 

1 

1 
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If H is written in terms of vector basis by, b:, b$ so that 

then 

H = {b"}l'ff + wo X {bo)' H = {bo}T {G + GH} (343) 

and identification of Eq. (339) with Eq. (333) requires only a proof of the equality 
of H and T.w. This proof requires the following calculation for system angular 
momentum : 

= c p 4 P '  x p' + 1 , p  x i d m ]  

sin& l, pdm = 0 by mass center definition. Thus (with Eq. (310)) 

1 

The matrix H representing H in vector basis b:, b:, b: therefore is given by 

in which all vectors and dyadics have been represented by matrices in their local 
vector basis, and where 

{ b8} = C "  {bo} (346) 

defines the direction cosine matrix relating a "local" set of dextral, orthogonal unit 
vectors b;, b;, b; fixed in 4, to b:, bO,, bi fixed in 6,. 

- 
To show that Eq. (345) is also equal to T.", we require 
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or 

Substituting (from the derivative of Eq. (310)) 

and (from Eq. (315)) 

into 2T yiclds 

(347) 

If all vectors and dyadics are written in terms of their local vector bases, and the 
direction cosine matrices defined by Eq. (346) are introduced, then Eq. (350) 
becomes 

By virtue of the anticommutativity of cross multiplication, and the skew symmetry 
of a matrix containing the tilde operator, the first matrix in square brackets may 
be written as 

and - similar operations can be performed on the second. In view of the fact that 
T is a scalar, and hence equal to its transpose, one can construct T,w by formally 
taking that contribution to aF/awo that is made by the dT appearing in the two 
premultiplier matrices appearing with superscripts T in Eq. (351), and then 
doubling the result to obtain the complete expression for a5'/aWo, or F,". The 
result is 

I 

i 
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as indicated by Eq. (345). Thus we have established that Eqs. (339), (333), (323a), 
and (308a) are all identical. 

d .  Summary for the point-connected bodies in a tree. It has been proven that, 
if we freely use the Hooker-Mgrgulies kinematical identity found in Eq. (310), 
then exactly the same equations of motion for the point-connected set of rigid 
bodies in a topological tree emerge from each of the following derivation 

p d - :  i 

(1) The H&*b@iWHooker eq~ations. 

(2) h e ’ s  quasi-coordinate formulation of DAlembePZ’s principle. 

(3) The combination of Lagrange’s generalized coordinate equations and 
Lagrange’s quasi-wordinate equations. 

(4) The combination of Lagrange’s generalized coordinate equations and the 
vector rotationral equation M = fi applied to the total system and resolved 
into a vector basis fixed in the reference body. 

Any cornparimis to be drawn among these methods must be based on subjective 
judgments of relative ease of formulation, since the digital computer numerical 
integration task is exactly the same in every case. The application of some method 
other than the four considered here might conceivably produce different equations 
permitting more efficient integration. Russell’s derivation algorithm (Ref. 18) seems 
to provide the alternative in the present literature most worthy of further con- 
sideration; the first order form of Lagrange’s equations (Eqs. (155) and (156)) 
advocated in Ref. 35 seems computationally preferable to the second order 
Lagrangian form, but this is a low standard of comparison. 

B. Rigid-Elastic Body System Models 

1. Single elastic body with small deformations. As stated in Subsection 11-A-2, 
it is both commonplace and reasonable to develop approximate descriptions of 
the motion of an elastic continuum in terms of a finite number of degrees of 
freedom, and thereby to represent that motion in terms of ordinary rather than 
partial differential equations. Such approximations are rarely challenged by those 
with engineering responsibilities, because in many applications this is the only 
avenue to meaningful results. Much more controversial is the procedure by which 
the limited number of degrees of freedom are selected. Very frequently in the 
literature this problem is sidestepped (as it has been thus far in this report) by 
simply postulating that somehow someone has provided the modal vectors (or 
“mode shapes”) that correspond to the deformation coordinates, so that one can 
(as in Eq. (31)) simply expand the vector u ( r l ,  r,, r3, t )  that represents the displace- 
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ment of a material point (TI,  r2, r3)  relative to some assigned position fixed in some 
reference frame f as 

with qj (r , ,  r2, r3)  given for j = 1, . . ., E. 

The selection of an equation formulation procedure depends crucially on the 
question of whether or not one treats the modal vectors as given. If one imagines 
that these vectors are somehow provided as part of the problem statement, then 
equations of motion can be constructed directly in terms of the generalized 
coordinates of deformation 91, ..., 9; and the six scalars that define the translation 
and rotation of the reference frame f with respect to which deformations are 
measured (see Subsection 11-A-2). Lagrange’s equations or Hamilton’s eqyations 
then could be used to obtain equations of motion in these generalized coordinates 
directly, without ever considering the primitive deformations represented by the 
vector u. This task would be facilitated by the assumption of small deformations, 
which permit terms above the second degree in the kinetic and potential energy 
expressions to be abandoned. 

If the modal vectors are given, it is still possible to formulate equations of 
motion from Newton’s second law or Lagrange’s form of D’Alembert’s principle, 
but with these methods one would be obliged to state the equations of motion 
first in terms of the primitive deformation vector u (r, t),  and then to introduce 
Eq. (353) as a coordinate transformation to obtain equations of motion involving 
the generalized coordinates q l ,  . . . ,9;. 

As we have established in general terms, the results of the application of 
Lagrange’s generalized coordinate equations must be the same as those obtained 
from Lagrange’s form of D’Alembert’s principle. For a single elastic body subject 
to small deformations and arbitrary gross motions, the equations of motion that 
emerge from either of these Lagrangian formulations are given by Eq. (41). 
Moreover, if all of the generalized coordinates represent small deviations from a 
solution to the equations of motion, then the linearized equations are given by 
Eq. (117). Thus if the modual vectors are assumed known, then it seems to be 
advantageous to adopt one of these two Lagrangian approaches, and to accept 
Eq. (41) or Eq. (117) as the equation of motion. 

On the other hand, if the analyst has the responsibility of calculating the modal 
vectors as part of his equation formulation task, then the advantages of Lagrange’s 
equation largely disappear. The modal vectors must then themselves be obtained 
from a set of equations of motion, which must be written in terms of u(r,t) 
directly. These equations can be obtained in either of two quite different forms 
(see Ref. 41). 

If the elastic body has a very simple configuration and simple patterns of gross 
motion, then it might be idealized in classical terms as a beam, plate, or shell and 
its equations of motion might be written as linear partial differential equations, 
obtained either from Hamilton’s principle or from the application of Newton’s 
second law to differential elements of mass. These equations might then be 
separable, in the sense defined in Subsection 11-A-2 and represented by Eq. (353), 

1 
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and the separated linear equations might then be solved (literally or numerically) 
for the modal vectors, which would then appear as selections from among the 
infinity of eigenvectors of the system equations. 

In the vast majority of cases of practical interest, the partial differential equa- 
tions of motion of an elastic body would be very difficult to formulate and even 
more difficult to solve. In such cases it is necessary for the analyst to “discretize” 
the mathematical model of the elastic body, introducing a model that has a finite 
number of degrees of freedom even before he formulates any equations of motion. 
In the discretized model all mass might be concentrated in the f G m  of particles 
located at a finite number of nodes of the elastic body, or there may be little rigid 
bodies at the nodes, as in Ref. 19. Mass might even be distributed throughout the 
hndy in the form d distributed-mass internodal elements (finite elements, as in 
Ref. 27), but the kinematical variables would be limited to those associated with 
the nodes, and the system would still have a finite number of degrees of freedom. 
In every case the equations of motion would have to be linear, constant coefficient, 
ordinary diikrenW equations to permit the calculation of the modal vectors as . The process of modal coordinate trans- 

earlier reports in this series (see Refs. 19, 
~ e .  Our present concern is solely with the 

comparis6n of procedures for formulating equations of motion. 

Once the commitment has been made to derive equations of motion of a dis- 
cretized model of an elastic body to obtain the modal vectors required for a modal 
coordinate transformation, then it would appear that.. the most efficient approach 
involves the dtirect appli-on of F = mA and M = H to nodal bodies and to &e 

efficient than Lagrange’s generalized coordi- 
latter one must in general retain in the kinetic 
m small variables, and this can significantly com- 

plicate the problem of kinematic analysis. With a direct Newton-Euler approach 
one can linearize in small variable whenever they appear. 

It is not so obvious that a direct Newton-Eder approach is preferable to the 
application of DAlembert’s principle in the form advanced by Lagrange or by 
Kane, or to the Lagrangian quasi-coordinate approach. This range of possibilities 
is dealt with completely by the following propositions, applicable to a discretized 
model of an elastic body consisting of n rigid nodal bodies interconnected by a 
massless elastic structure subject to small deformations. 

Proposition 1 .  Applying F = mA and M = H to nodal bodies and recording 
scalar equations in a vector basis fixed in some reference frame f following the 
gross motion, with deformation variables consisting of translations and rotations 
of nodal bodies relative to f ,  produces the same equations of motion that emerge 
from Lagrange’s equations and from Lagrange’s form of D’Alembert’s principle 
when the generalized coordinates are the translations and rotations of nodal bodies 
relative to f ,  referred to axes fixed in f .  

Proposition 2. Applying M = H to a discretized total elastic body and record- 
ing scalar equations for a vector basis fixed in some gross motion frame f in which 
the system mass center is fixed, including the inertial angular velocity o of f 
among the variables, produces the same three equations of motion that emerge 
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from either Kane's or Lagrange's quasi-coordinate formulation, with the scalar 
components of o for a vector basis fixed in f chosen as the quasi-coordinate 
derivatives. 

A satisfactory proof of Proposition 1 can be presented without lengthy deriva- 
tions and comparisons. We have already established in completely general terms 
that Lagrange's equations for independent generalized coordinates (see Eqs. (70)) 
are identical to those obtained from Lagrange's form of D'Alembert's principle 
as applied to systems with independent generalized coordinates (see Eq. (67) or 
Eq. (ll), or Eq. (28)). From Eq. (28) it is clear that if the generalized coordinates 
9k are chosen for k = 1;. ., 6n to represent the 3n translations ut of the mass cen- 
ters of the n nodal bodies along axes fixed in f and the 3n orthogonal rptations 
of these bodies ( j  = 1,. . . , n and i = 1, 2, 3), then the quantities aRj/& and 
a d / &  must correspond to orthogonal unit vectors f l ,  fz ,  f ,  fixed in f ,  and Eq. (28) 
produces exactly the same equations as would emerge from 

.. 
f i * F j = 3 , R j * f j ,  j = l ; - . , n a n d i =  1,2,3 

f i .Mj  = H j . f .  a )  i = l; .*,nandi = 1,2,3 

Thus Proposition 1 is proven. 

The proof of Proposition 2 requires more development. The objective is to 
demonstrate that 

f i (M - H) = 0 (354) 

and Lagrange's quasi-coordinate equations in the form of Eq. (333) are identical, 
with the 3 by 1 matrix w representing the inertial angular velocity of f in the vec- 
tor basis fixed in f ,  and the 3 by 1 matrix 9O containing a set of inertial attitude 
angles for f .  The kinetic energy now is a function of o and of the various scalar 
measures of deformation relative to f ,  as represented generically by 91,--., 96n or 
explicitly by ui and pi for j = 1; * *, n and i = 1,2,3. The matrix Wo has the mean- 
ing established by Eq. (334), and the 3 by 1 matrix of generalized forces Q" has 
the elements (from Eq. (22)) 

(355) 

! 
The identity of Eqs. (333) and (354) will be proven by first showing that 

and then showing that 

d -  - - 
- (T,,) + ZT,, - Wi'T,, = { f}  *H dt (357) 

1 where 

{f)  { 
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In Eq. (355) we can substitute 

and 

Rj = Rc + o x pj + {f)T&j 

where w is the inertial angular velocity of f ,  and other symbols are as previously 
defined. Since in these expressions only o depends upon qi (k = 1,2,3), Eq. (355) 
can be written as 

where M is the moment of external forces about the system mass center. 

In matrix tezm in vector basis f,,fz,f,, Eq. (358) becomes 

Q” = u , p f  

where M = {f) *M so that with Eq. (334) the validity of Eq. (356) is established. 

The proof of Eq. (357) requires firstly the Lemgnition that ?,p. = 0, since the 
inertial atti- angles of f cannot appear in T, and secondly the realization that 
with H = {f)?H one can write the right hand side as fi + ZH. Thus Eq. (357) 
can beprwen if the teiatioaJhp 

H = F,u (359) 
can be established. 

The left side of Eq. (359) is available from Eq. (344) in the form 

where {bj} is a vector basis fixed in the jth nodal body and 

{bj) = Cj’{f) and Cfj = [CjfIT 

one finds 
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The right side of Eq. (359) requires an expression for the kinetic energy of a 
system of rigid bodies, which from Eq. (74) is 

+ 
1 
2 

+ 

- - - 

In view of the fact that T is a scalar, and hence equal to its transpose, one can 
construct ?-,w by formally taking that contribution to F." that is made by the wT 

appearing in the two premultiplier matrices and doubling the result, to find 

Since by Eqs. (368) and (355) Eq. (359) is proven, then Eq. (357) is also estab- 
lished, and with Eq. (356) Proposition 2 is proven. 

With the help of Propositions 1 and 2 we can see that for a discretized model 
of an elastic body most of the primary procedures for equation formulation yield 
results that are not only equivalent, but identical. Continued debate about the 
relative merits of various derivation procedures then becomes pointless. 

2. Interconnected rigid bodies and elastic bodies. The propositions of the pre- 
vious section can be generalized to provide parallel propositions that apply to any 
holonomic system of rigid bodies and elastic bodies. In parallel with Proposition 2 
of the section on completely elastic bodies we have the following. 

Proposition 3. Applying M = H to any material continuum and recording scalar 
equations for a vector basis fixed in any reference frame f in which the system 
mass center is fixed, including the inertial angular velocity 0 of f among the vari- 
ables, produces the same three equations of motion that emerge from either Kane's 
or Lagrange's quasi-coordinate formulation, with the scalar components of w for a 
vector basis fixed in f chosen as the quasi-coordinate derivatives. 

The proof of Proposition 3 follows that of Proposition 2, consisting again of a 
demonstration of the validity of Eqs. (356) and (357). The fundamental difference 
lies in the use of integral expressions for Q;, M, H, and T. 
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Eq. (355) becomes, from Eq. (32a) and (17), 

which corresponds to Eq. (358), and confirms Eq. (356). 

Proof of Eq. (357) now again reduces to proof of Eq. (359), where now from 
Eq. (43) 

H = I + /(b + u) x dm 

= {f)F[lw t \G+ ii)irdm] = {f)TH (370) 

and from Eq. (76) with p replaced by c, 

- 1  1 T = ~ 3 f k ~ - R ~  + -a* 2 1.0 + a*\@ + u) X Bdm + :/b*?adm 

Thus 

and comparison with Eq. (370) codrms Eq. (359), and hence establishes Eq. (357) 
and proves Proposition 3. 

Proposition 3 is concerned with only three of the equations of motion, namely 
those that describe the rotation of the reference frame f ,  which defines the gross 
motion of the nonrigid system. Equations of translation of the system mass center, 
which is fixed in f ,  are almost universally obtained by simply applying Newton’s 
second law to the entire system. Any remaining controversy is thus limited to dis- 
cussions of the relative advantages of various procedures for obtaining equations 
of motion of internal components relative to frame f .  What follows is intended to 
contribute to the resolution of this final controversy. 

Proposition 4. For any dynamical system modeled as a finite collection of par- 
ticles and rigid bodies, described by independent coordinmates that define either 
(1) the rotation of a rigid body relative to a pointconnected rigid body, or (2) the 
translation of a particle relative to a rigid body with respect to which its motion 
is constrained, or (3) the translation or rotation of a particle or rigid body with no 
kinematical constraints relative to some reference frame f ,  in terms of an orthog- 
onal vector basis fixed in f ,  the equations of motion in these variables may be 
obtained from Lagrange’s form of D’Alembert’s principle, as in Eq. (28). More- 
over, identical equations will result from the application of Lagrange’s equations, 
as in Eq. (70), or from the applicaZion of Kane’s method, as in Eq. (66). Fin$ly, 
any equations of motion that are obtained by applying F = mA and M = H to 
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individual nodal bodies free of kinematical constraints will be identical t~ a sub- 
set of those obtained from Eq. (B), assuming the same selection of coordinates 
describing translations and rotations of the nodal bodies relative to frame f .  

Proof of Proposition 4 requires no more than the integration of arguments 
already advanced in this report. Lagrange’s form of D’Alembert’s principle has 
been presented in this report in many guises, including Eq. (67) and (for systems 
of particles and rigid bodies) Eq. (28). Lagrange’s equations for independent gen- 
eralized coordinates (Eq. 70) were derived from Eq. (67), and have been shown 
to provide identical equations for any particular application. Thus Eq. (28) and 
Eq. (70) provide identical results. Moreover, it has already been established that 
Kane’s quasi-coordinate equations (Eq. (66)) are identical to Lagrange’s form of 
DAlembert’s principle when the quasi-coordinates are generalized coordinates. 
Proof of Proposition 4 thus requires only the observation that for an unconstrained 
nodal body labeled r the equations 

.. 
(372) fi (F‘ - .%‘R‘) = 0 

and 

f i  (M‘ - H‘) = 0 (373) 

for i = 1,2,3 will also emerge from Eq. (28). This result is obvious in the light of 
Eqs. (11) through (13) if for some k, r, and all s # r, 

f i  (i = 1,2,3) 
aR‘ -= aGk 

and this will clearly be the case if among the variables q,, * . e ,  9” there appear 
scalars that describe the translations of the nodal body relative to f in vector basis 
f,, f,, f, and the rotations of the nodal body relative to f about axes parallel to 
fl, fp, andf,. Thus Proposition 4 is proven. 

Proposition 3 applies to any material continuum, but Proposition 4 is more 
restricted, being limited to combinations of rigid bodies and discretized elastic 
bodies. We should also establish and compare the alternative equation formula- 
tion procedures applicable to an arbitrary continuum that is described in terms 
of a set of distributed or modal coordinates, for which mode shapes are known 
(see Eq. 353). In this case we have already established in Eq. (42) a complete set 
of equations of motion from Lagrange’s form of DAlembert’s principle. Since we 
know that Kane’s approach and Lagrange’s generalized coordinate equations must 
yield results identical to those that follow from Eq. (a), we have no realistic 
alternative, and need not look beyond these equations. 

IV. Conclusions and Recommendations 
As noted in the Introduction, it is the purpose of this study to explore three of 

the basic methods of analytical dynamics and their variations, and to examine 
them for their suitability for the development of multipurpose generic formula- 
tions of the equations of motion of nonrigid spacecraft. This report must conclude 

I 
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with an assessment of the advisability of making the commitment of resources nec- 
essary to develop the generic computer programs required for spacecraft simula- 
tion based on the equations of analytical dynamics examined here. This assessment 
depends not only on what possibilities are offered by the methods of analytical 
dynamics but also on the alternatives, which have not been given detailed exposi- 
tion in this report, but which have been covered extensively in previous JPL 
reports by this writer. Thus in what follows there appear brief comparisons of 
generic computer programs now operational or in development at JPL with generic 
computer programs that could be developed using the methods of analytical 
dynamics. 

The point-connected set of rigid bodies in a topological tree provides the 
most straightforward class of spacecraft idealizations for which generic computer 
programs have been written. Reference 46 documents the computer subroutines 
most recently developed at  JPL, and soon to be included in the COSMIC library, 
which is available to all qualified users. This program is based on Ref. 31, which 
in trpn is an outgrowth of the work of Hooker (Ref. 28) and of Hooker and 
Marguks (Ref. 18). The equations are therefore referred to here as the HMH 
equittb&+aQa existing and gknedly available program based on the HMH 
e q e  p+nts the standad against which any proposed new program should 
bemaantnd. 

As shown in Subsection 111-A-4, the HMH equations in the standad program 
are predsely the same as would emerge from the two quasi-coardinate methods 
identikd Bere with Lagrange and b e ,  and these are identical to those that 
would be obtained by combining Lagrange’s equations for @dependent general- 
ized ccmdhates with the vector rotational equation M = H, assuming that the 
same d t e s  are used tBroyghtat. The alternative of employing Hamilton’s 
equations sams less a-ble, because of the necessity of taking partial deriva- 
tives of a matrix inveme. Either the ma* must be inverted and differentiated by 
hand, or the digital computer must perform this task; in the latter case one must 
either employ symbolic manipulation or resort to the substitution of matrix iden- 
tities that add to the txmptational bden.  

Thus we can answer negatively the central question, “should we develop new 
computer programs to replace the HMH equations with alternatives considered 
here?” Two reservations should however be noted explicitly. First it should be 
noted that the negative conclusion advanced here does not preclude the possi- 
bility that a completely different method might be developed that supersedes the 
HMH equations. Russell’s equations (Ref. 18) have been mentioned as a candidate 
for this role, although these equations have not been cast in generic form and fully 
automated for simulation as have the HMH equations. The second reservation 
relates to the fact that we have not addressed the detailed problems of program- 
ming a given set of equations for numerical integration. We have not entered the 
controversy over the desirability of transforming second order equations into first 
order form before integration, nor considered how this should be done if it is 
desirable. The work of Vance and Sitchin (Ref. 10) does deal with this problem; 
they recommend a first order form of Lagrange’s equations represented here by 
Eqs. (153) and (154) rather than the second order form represented here by 
Eq. (110), and on this essentially computational issue no position is taken in this 
report. The contribution by Bodley and Park (Ref. 34) is in the same category; 
having obtained quasi-coordinate equations that would if developed be identical 

JPL TECHNICAL REPORT 32-1593 127 

I 



to the HMH equations, they transform to generalized momenta, presumably for 
real or imagined computational convenience. We have not examined here the 
computational advantages or disadvantages of this transformation. 

The transition from the multiple-rigid-body tree model to an arbitrary collection 
of particles and rigid bodies takes us beyond the range of any competitive generic 
computer program, so we no longer have a standard against which to measure new 
programs, and judgments become more subjective. If this investigator were 
required to generalize the multiple-rigid-body tree model to some more general 
model involving only particles and rigid bodies, he would adopt Kane’s quasi- 
coordinate approach (Refs. 36 and 40). This method provides the HMH equations 
for the multiple-rigid-body tree, with the help of the kinematical relationship in 
Eq. (310); it automatically produces equations of minimum dimension, even for 
simple nonholonomic systems; and it is straightforward and physically interpret- 
able in application. 

Generalization of the spacecraft mathematical model to include deformable 
bodies raises many new issues. As noted in Subsection 111-B-1, one must decide 
in discussing the dynamics of deformable bodies whether or not the “mode shapes” 
are to be treated as given or considered to be among the unknowns of the prob- 
lem. Although you can write a lovely paper based on the supposition that the 
mathematical model comes to you complete with a finite number of mode shapes, 
you cannot expect this luxury when your objective is to launch a successful space- 
craft. Even if the mode shapes for the spacecraft are “given,” the gift should be 
accepted with caution and with critical inquiry into its origins. It is therefore 
strongly recommended here that the task of selecting the mode shapes and the 
number of modal coordinates be considered to be an important phase (perhaps 
the most important phase) of any flexible spacecraft simulation effort. In most 
cases, this charge implies a return to a mathematical model that is either a very 
simple continuum (such as a beam) or a discretized system of nodal bodies and 
finite elements. In the case of the continuum one must obtain partial differential 
equations of motion (perhaps by means of Hamilton’s principle, as in Ref. 41) and 
separate them into ordinary differential equations. For most spacecraft applica- 
tions, however, a discretized model is required, and the methods of this report 
must be compared to alternatives presented in previous JPL Reports in this 
series (see Refs. 19, 27, 32). 

Reference 32 provides a generic formulation of the equations of motion of a 
topological tree of point-connected rigid bodies having nonrigid appendages. For 
the special case of small-deformation elastic appendages with mass concentrated 
in the form of nodal bodies, these equations are being programmed at JPL at this 
writing. When completed, this program will become a part of the COSMIC 
library, and will be generally available as a standard against which other methods 
with similar restrictions can be prepared. 

In trying to determine whether or not the methods of analytical dynamics 
examined in this report offer advantages over existing procedures based on a 
Newton-Euler formulation, we can rely heavily on Propositions 3 and 4 of Sub- 
sectiop 111-B-2. Proposition 3 indicates in more precise terms that by applying 
M = H to an arbitrary material system we get exactly the same equations that 
would be obtained by applying either Kane’s or Lagrange’s quasi-coordinate equa- 
tions with the same choice of variables. Proposition 4 indicates in essence that for 
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a discretized model of an elastic body the application of F = mA and M = H 
to nodal bodies and to point-connected rigid bodies as in Ref. 32 produces pre- 
cisely the same equations as would be obtained by Lagrange’s form of D’Alembert’s 
principle, or by Lagrange’s generalized coordinate equations and Lagrange’s 
quasi-coordinate equations, or by Kane’s equations. As in the multiple-rigid-body 
case, Hamilton’s equations seem not to be competitive. Again there appears to be 
no demonstrable advantage in any of the methods of analytical dynamics over the 
Newton-Euler methods used in deriving equations for the standard program now 
under development. 

Generalization beyond the standard program could probably be accomplished 
by any of several methods without influencing the final result. If the task were 
undertaken by this analyst, he would elect to work with Kane’s formulation 
(Refs. 36 and 40), which in many applications reduces to the use of DAlembert’s 
principle or the Newton-Euler equations, but which offers advantages in sys- 
tematic constraint elimination and variable reduction. 
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Appendix A 

Not at ion a I Convent ions 

In formulating equations of motion of dynamical systems of arbitrary dimen- 
sion, it is most convenient to use matrices. The resulting equations have the added 
advantage of amenability to programming for numerical integration. Unfortu- 
nately, with these advantages comes the burden of remembering notational con- 
ventions, without which the analysis becomes too cumbersome and complex to 
be intelligible. 

A rather complete symbol list appears under Definition of Symbols, Appendix B, 
and individual symbols are also defined as they are introduced. In addition, the 
basic conventions applied in this report to whole classes of symbols should be 
noted as follows: 

A 
(1) The symbol = means e9wls by ~ r a i ~ ,  and = means identically qual 

to of &pal as a &equence of definitions. Of course = merely indicates 

(2) Gibbsian vectors and dyadics are boldface letters (as in the vector R and 

(3) Scalars are either subscripted italic letters (as in mj and a t )  or suipt letters 

q*. 

the dyadic I); ldters representing dyadics are azns (as in U and D). 

(as in -c, 3, and .!q. 
(4) Matrices are generally either unadorned (as in 9 and A) or superscripted 

letters (as in d). Matrix transposition is indicated by superscript T. A row 
matrix is dways’hitten as the transpose of a column matrix. Thus the sym- 
bol q cd& qi t sen t  a row matrix; the row matrix with elements ql , * * * ,  qn 
must be written as qr. 

(5) Braces are used to identify a column or row matrix in terms of its elements 
(which may be scalars or matrix partitions separated by dashed lines). Thus 
we might find 

and we might find the column matrix x written as 

where 9 and p are column matrices establishing partitions of x. Braces may 
also be used simply to emphasize the matrix structure implied by a symbol. 
The column matrix 9 of elements ql;. . ,  9,, might be written as (91) or even 
(9) to provide a reminder that 9 is a column matrix with elements 9 2 . .  e .  
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Braces also enclose column arrays of Gibbsian vectors, which arrays are 
never written without braces. 

(6) Square brackets are used to identify the elements (scalar or matrix parti- 
tions) of a matrix other than a column matrix or row matrix. For example 

and 

(7) Gibbsian vector and dyadic differentiation (ordinary or partial) is referred 
to an inertial reference frame unless otherwise stated; in particular, a dot 
over a Gibbsian vector or dyadic indicates ordinary time differentiation in 
an inertial reference frame. A dot over a scalar is an ordinary time deriva- 
tive, and a dot over a matrix indicates time differentiation of its scalar 
elements. 

(8) Partial differentiation of one scalar with respect to another is sometimes 
indicated by the comma convention, so that 

(9) Partial differentiation of a scalar with respect to a column matrix is the 
column matrix of partial derivatives with matching indices. For example 

1 

ax A aL A 

dq={aq,)= i9 
The comma convention may be used for matrices, so that 

(10) Partial differentiation of a scalar with respect to a row matrix is the row 
matrix of partial derivatives with matching indices. For example 

I 
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(11) Partial differentiation of a 1 by n row matrix 9T by an rn by 1 column matrix 
x is the rn by n matrix of partial derivatives with element ag;/a~, in the ith 
row, jth column. The comma convention may be used. Thus 

(12) Partial differentiation of the n by 1 column matrix 9 by a 1 by m row matrix 
xT is the n by rn matrix of partial derivatives with the element agi/axj in the 
ith row, jth column. Thus with the comma convention we have 

N W h t  [qpI'= 1951 a 9# *mgf.. 

(13) Partial dlflFaaenclrtson af my n by m matrix, say A, with respect to any 
scalar, say t, is the n by m matrix of partial derivatives with the element 
aAc ,/at in the ith row, jth column. Thus 

(14) If 0 is a 3 by 1 column matrix such that 

then Z is a 3 by 3 skew symmetric matrix given by 
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Appendix B 

Definition of Symbols 

Page (equation) Of 
first Occurrence 

Brief definition (see text for elaboration) 

23 (55) 
23 (54) 

98 
108 (307) 
23 (56) 
23 (56) 

75 (219c) 
121 

73 (215) 
108 (307) 

23 (55) 
23 (54) 

9 (24); 109 

16 (42) 
37 

37 (loo) 

88 

88 
108 (307) 

15 
9 

58 (170d) 

88 (261) 

43 (117) 

110 (309) 
39 (104) 
58 (169) 

15,34 (85) 

4 (1) 

m X v matrix in constraint equation 
elcment of A in row s, column k 
partitions of A 
column matrix in HMH equations 
m X m partition of A 
m X n partition of A 
partition of A in sample 
inertial acceleration of a 
mass center 
sphere radius in sample 

problem 
particle or a system 

problem 

coefficient matrix in HMH equations 
m X 1 matrix in constraint equation 
element of B 
number of rigid bodies; also set of indices 
corresponding to rigid bodies in a system 
number of deformable bodies 
rigid body 
dextral, orthogonal set of unit vectors 
fixed in b 
dextral, orthogonal unit vectors fixed in rigid 

rigid body j 
direction cosine matrix relating orientations 
of 6( and dj  
mass center 
mass center of body 1 

body 4j 

COS ea 
position vector in sample problem 

symmetric coefficient matrix of q;  damping 
matrix 

barycentric position vectors 
right side of state equation 
scalar component of F 
resultant force 

force applied to particle j 
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Definition of Symbols (contd) 

Page (equation) of 
first occurrence Symbol Brief definition (see text for elaboration) 

4 

4 
89 (266a) 

12 (29) 

28,27,29 

17 

28,27,-29 

9 

6 (13); 12 

109 
15 (39); 26 

10 (26) 

5 (9) 

53 (156a) 

18,100 

101 

78 (234) 

58 (169) 

“external force” applied to particle j 

“internal force” applied to particle i 
resultant force applied to body j 

floating reference frame with respect to 
which deformations are defined 
matrix of generalized active forces; kth 
element of f 

Tisserand frame; Buckens frame; principal 
axis frame 

matrix of generalized inertial forces; kth 
element off 

r d t a n t  force on a rigid body, excluding 
%onworking” constraint forces 

force Fj minus nonworking constraint 
force f;; also unit vector fixed in frame f 
(for j = 1,2,3) 
‘honworking” constraint force on particle i 
force Fj minus nonworking constraint force 

skew-symmetric matrix d c i e n t  of gener- 
alized velocity matrix 

unit vector defining hinge axis on & 
angular momentum referred to system mass 
center; IH1 
angular momentum of body i referred to its 
mass center 

function appearing in holonomic constraint 
equation 

Hamiltonian, expressed in terms of q, p ,  
and t 

inertia matrices 

element of inertia matrix I (i, j = 1,2,3) 

moment of inertia of uniform sphere for 
mass center 

principal axis moments of inertia for body 
mass center (superscript may identify 
body index) 

Z’, Z” 79 (238), 83 (251) coefficient matrices in sample problem 
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Definition of Symbols (contd) 

Page (equation) of 
first Occurrence Symbol Brief definition (see text for elaboration) 

17 (43), 26 

20 

41 (109) 

31 (72); 87 (259) 

42 (116) 

87 (259); 42 (116b) 

88 (260a) 
109 (308) 

30 
84 (253a), 40 (lOsa), 

70 (210e) 
34 (86); 58 (169) 

14 (36) 
10 

5 (9) 
4 (1) 

10 (25) 

9 (24) 

4 (1) 
10 

1; 6 

12 (31) 
98 

inertia dyadic for mass center (superscript 
may identify body index) 

inertially fixed, dextral, orthogonal unit 
vectors 

n X n matrix in equations of motion 

inertia dyadic referred to point p ;  moment 
of inertia in sample problem 

coefficient matrix of q in linearized equations 

spring constant in sample problem; also 
intermediate coefficient matrix for q 

length in sample problem 
position vectors of hinge points relative to 
mass centers 
Lagrangian 
inertia matrices 

resultant moment referred to mass 
center c; scalar component of M 
system mass 
mass of rigid body j 
number of constraint equations 
mass of particle j 
moment about mass center c j  of forces other 
than nonworking constraint forces applied 
to body j 
moment for point p of forces except for 
nonworking constraint forces 
moment about p j  fixed in body j of forces 
applied to body 1, excluding nonworking 
constraint forces 

number of particles 
number of particles in rigid body system i 
dimension of column matrix; also number 
of independent generalized coordinates 
(degrees of freedom) 
number of modes of deformation 
point occupied by mass center in nominal 
state 

1 

I 
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Definition of Symbols (contd) 

Brief definition (see text for elaboration) Page (equation) of 
first occurrence 

39 (104); 74 (218) 

8 
52 (152); 52 (153) 

5 (6) 
23 

8 

9 (24 

43 
87 (259) 

2n X 2n coefficient matrix in state equation; 
also matrix in sample problem 
reference point, often fixed in a rigid body 
generalized momentum; matrix of gener- 
alized momenta 
generic position vector referred to 0 
unit vector fixed in the principal axis frame 

number of particles; also set of indices 1 
through n 

matrix of generalized active forces 
nmconservative part of generaked active 
fore0 
generalized active force for coordinate k 
generalized constraint force for coordinate k 
generalized inertia force for coordinate k 
partitions of Q 
matrix of generalized inertia forces 

column matrix with typical element 91 

n x 1 matrix partition of 9 (unconstrained 
coordinates) 

generalized coordinate j 
rn X 1 matrix partition of q (constrained 
coordinates) 

partitions of q 

mass-weighted length in sample problem 

scalar component of R 
generic symbol for inertial position vector 

inertial position vector for particle j 

inertial position vector of mass center c 

inertial position vector of mass center cj of 
body j 

inertial position vector of reference point p 

inertial position vector of reference point p i  
fixed in rigid body j 

Rayleigh damping function 

dimension in sample problem 
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Definition of Symbols (contd) 

140 

Page (equation) of 
first occurrence 

Symbol Brief definition (see text for elaboration) 

12 (30) 

12 (29) 

8 
31 (73) 

58 (170d) 
31 (71); 29 (68) 

48 (137), 68 (203) 

35 
35 

39 (105) 

19 

109 (308) 

5 (6) 
27 

18 

17 

17 (45); 26 (64a) 

12 (29) 

30 

25 (59b); 29 (65i) 

25 (59b); 29 (65i) 

25 (62a) 

25 (62a) 

28 (6oc) 
24 (59a) 

24 (59a) 

position coordinates, scalar components of r 

position vector relative to p of point in 
undeformed body 
position vector of particle j relative to p 
position vector of mass center c relative to 
reference point p 
sin 8, 
kinetic energy expressed in primitive terms 
or in terms of q, q,  and t 
kinetic energy expressed in terms of q,  u, 
and t ,  or in terms of q, p ,  and t 
rotational kinetic energy 
translational kinetic energy 

parts of T that contain generalized velocity 
terms of degree 2, 1, and 0, respectively 

unit vectors (for i = 1,2,3) fixed in the 
Tisserand frame 
resultant external torque applied to 6, for c j  

time 
unit matrix 
3 X 1 matrices (for i = 1,2,3) representing 
unit vectors 

unit dyadic 

scalar components of u (i = 1,2,3); also 
derivative of quasi-coordinate j 

deformational displacement 

potential energy 

coefficient of qk, or uk, in expression for R 

term in R independent of generalized veloci- 
ties, or of quasi-coordinate derivatives 

term in R" independent of generalized 
velocities 

coe5cient of qk in expression for Rc 
coefficient of qk in expression for R j  

coefficient of q r  in expression for R, 

term in Rj  independent of generalized 
velocities 

1 
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Definition of Symbols (contd) 

Page (equatior.) of 
first Occurrence Brief definition (see text for elaboration) 

27 (64c) 

26 (64b) 

97 (280) 

27 (64c) 

26 ( a b )  

39 (103); 55 (166) 

99 (=) 
40 (1oBb) 
50 (14%) 

46 (131) 
45 (126) 

5 

15 

15 

10 (27), 109 

17 (45) 
108 (307) 

12 (31) 

58 (169) 
8 

coefficient matrix in quasi-coordinate deriva- 
tive definition 

element of W in row s, column k 
3 x 3 matrix partition of W for special case 

column matrix in quasi-coordinate derivative 
defillition 

element of w 

state matrix, consisting of either 9 and 9 
partitions, or 9 and p partitions 

integration variable in sample problem 

postmultiplier of 9* in expression for TI 
m a e  apparing in Lagrange’s quasi- 
COQpilfnate equations 
angles in sample problems 

variational symbol 

path element 

modal coordinates in sample problem 

1-23 attitude angles 

ta X n matrix representing approximation 
of To 
matrix of Lagrange multipliers 

Lagrange multiplier 

number of (possibly interdependent) gen- 
eralized coordinates 

position vector of generic point referred to 
system mass center 

position vector of generic point of undeformed 
system for system mass center 

position vector of particle s or mass center 
of d, referred to system mass center 

scalar components of p ( j  = 1,2,3) 

magnitude of hinge torque 

vector deformation functions of spatial 
variables, or modal vectors 

scalar component of 0 

inertial angular velocity of a rigid body 
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Definition of Symbols (contd) 

142 

Page (equation) of 
first occurrence Symbol Brief definition (see text for elaboration) 

mi, J 9 (24), 108 (307) inertial angular velocity of body i ;  matrix 
counterpart 

@k 25 (62b) coefficient of qk in expression for o 

at 25 (62b) term in o independent of generalized 
velocities 

0: 28 (65f) coefficient of t i k  in expression for 
a; 28 (65f) term in independent of quasi-coordinate 

derivatives 

1 

I 
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